Biomolecules from Alga: Biological Effect and Pharmacological Properties

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Natural and Bio-inspired Molecules".

Deadline for manuscript submissions: closed (15 April 2021) | Viewed by 52697

Special Issue Editor

Special Issue Information

Dear Colleagues,

Algae are mainly composed of proteins, carbohydrates, lipids, and trace nutrients including vitamins, antioxidants, and other elements. These photoautotrophic organisms include eukaryotes (macro- and microalgae) and prokaryotic Cyanobacteria (also called blue-green microalgae) living in various aquatic but also nonaquatic habitats. Algae have the potential to play pivotal roles in remedying the prevailing global energy, environment, and food crisis. Indeed, bioactive compounds from algae such as proteins, fatty acids, carbohydrates, vitamins, and pigments can be sourced directly from their primary or secondary metabolism. Many of these compounds have been described as having antifungal, antiviral, antialgal, antienzymatic, antibiotic, antimicrobial, antioxidant, and anti-inflammatory capacities, with great potential for the development of new products for medical, pharmaceutical, cosmetic, and food industries. This Special Issue encompasses the roles of alga in biomolecule production, including screening of extracts or isolation of new metabolites and assessment of their biological activity.

Prof. Dr. Philippe Michaud
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • seaweed
  • microalgae
  • cyanobacteria
  • blue biotechnology
  • algae
  • bioactive compounds

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 1541 KiB  
Article
Chemistry of Tropical Eucheumatoids: Potential for Food and Feed Applications
by Andrea Ariano, Nadia Musco, Lorella Severino, Anna De Maio, Annabella Tramice, Giuseppina Tommonaro, Sara Damiano, Angelo Genovese, Oladokun Sulaiman Olanrewaju, Fulvia Bovera and Giulia Guerriero
Biomolecules 2021, 11(6), 804; https://doi.org/10.3390/biom11060804 - 29 May 2021
Cited by 7 | Viewed by 3187
Abstract
The use of seaweeds as additives in animal nutrition may be a valid option to traditional feed as they represent a rich source of minerals, carbohydrates and antioxidants. The aim of this study was to analyze the chemical composition and in vitro antioxidant [...] Read more.
The use of seaweeds as additives in animal nutrition may be a valid option to traditional feed as they represent a rich source of minerals, carbohydrates and antioxidants. The aim of this study was to analyze the chemical composition and in vitro antioxidant capacity of two tropical eucheumatoids, Kappaphycus alvarezii and Kappaphycus striatus, in Malaysian wild offshore waters. The chemical analysis was performed via inductively coupled plasma–optical emission spectroscopy for evaluating the concentration of toxic (Cd, Pb, Hg, As) and essential elements (Mn, Fe, Cu, Ni, Zn, Se); NMR spectroscopy was used for carrageenans investigation. Furthermore, the soluble and fat-soluble antioxidant capacities were determined by FRAP, DPPH and ABTS assays. The chemical analysis revealed a higher content of trace elements in K. alvarezii as compared to K. striatus, and both exhibited a high mineral content. No significant differences in metal concentrations were found between the two species. Both samples showed a mixture of prevailing κ- and t-carrageenans. Finally, the levels of soluble and fat-soluble antioxidants in K. alvarezii were significantly higher than in K. striatus. Our findings suggest that K. alvarezii could be used as a potential feed additive because of its favorable chemical and nutritional features. Full article
Show Figures

Figure 1

20 pages, 1820 KiB  
Article
A Biorefinery Approach to the Biomass of the Seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining Phlorotannins-Enriched Extracts for Wound Healing
by Carolina A. M. Ferreira, Rafael Félix, Carina Félix, Adriana P. Januário, Nuno Alves, Sara C. Novais, Juliana R. Dias and Marco F. L. Lemos
Biomolecules 2021, 11(3), 461; https://doi.org/10.3390/biom11030461 - 19 Mar 2021
Cited by 18 | Viewed by 3548
Abstract
Brown seaweeds are recognized sources of compounds with a wide range of properties and applications. Within these compounds, phlorotannins are known to possess several bioactivities (e.g., antioxidant, anti-inflammatory, and antimicrobial) with potential to improve wound healing. To obtain phlorotannins enriched extracts from Undaria [...] Read more.
Brown seaweeds are recognized sources of compounds with a wide range of properties and applications. Within these compounds, phlorotannins are known to possess several bioactivities (e.g., antioxidant, anti-inflammatory, and antimicrobial) with potential to improve wound healing. To obtain phlorotannins enriched extracts from Undaria pinnatifida, a biorefinery was set using low-cost industry-friendly methodologies, such as sequential solid–liquid extraction and liquid–liquid extraction. The obtained extracts were screened for their antioxidant and antimicrobial activity against five common wound pathogens and for their anti-inflammatory potential. The ethanolic wash fraction (wE100) had the highest antioxidant activity (114.61 ± 10.04 mmol·mg−1 extract by Diphenyl-1-picrylhydrazyl (DPPH) and 6.56 ± 1.13 mM eq. Fe II·mg−1 extract by and Ferric Reducing Antioxidant Power (FRAP)), acting efficiently against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria, and showing a nitric oxide production inhibition over 47% when used at 0.01 µg·mL−1. NMR and FTIR chemical characterization suggested that phlorotannins are present. Obtained fraction wE100 proved to be a promising candidate for further inclusion as wound healing agents, while the remaining fractions analyzed are potential sources for other biotechnological applications, giving emphasis to a biorefinery and circular economy framework to add value to this seaweed and the industry. Full article
Show Figures

Figure 1

18 pages, 3360 KiB  
Article
Optimization of Exopolysaccharides Production by Porphyridium sordidum and Their Potential to Induce Defense Responses in Arabidopsis thaliana against Fusarium oxysporum
by Marwa Drira, Jihen Elleuch, Hajer Ben Hlima, Faiez Hentati, Christine Gardarin, Christophe Rihouey, Didier Le Cerf, Philippe Michaud, Slim Abdelkafi and Imen Fendri
Biomolecules 2021, 11(2), 282; https://doi.org/10.3390/biom11020282 - 14 Feb 2021
Cited by 23 | Viewed by 2961
Abstract
Polysaccharides from marine algae are one novel source of plant defense elicitors for alternative and eco-friendly plant protection against phytopathogens. The effect of exopolysaccharides (EPS) produced by Porphyridium sordidum on elicitation of Arabidopsis thaliana defense responses against Fusarium oxysporum was evaluated. Firstly, in [...] Read more.
Polysaccharides from marine algae are one novel source of plant defense elicitors for alternative and eco-friendly plant protection against phytopathogens. The effect of exopolysaccharides (EPS) produced by Porphyridium sordidum on elicitation of Arabidopsis thaliana defense responses against Fusarium oxysporum was evaluated. Firstly, in order to enhance EPS production, a Box–Behnken experimental design was carried out to optimize NaCl, NaNO3 and MgSO4 concentrations in the culture medium of microalgae. A maximum EPS production (2.45 g/L) higher than that of the control (0.7 g/L) was observed for 41.62 g/L NaCl, 0.63 g/L NaNO3 and 7.2 g/L MgSO4 concentrations. Structurally, the EPS contained mainly galactose, xylose and glucose. Secondly, the elicitor effect of EPS was evaluated by investigating the plant defense-related signaling pathways that include activation of Salicylic or Jasmonic Acid-dependent pathway genes. A solution of 2 mg/mL of EPS has led to the control of fungal growth by the plant. Results showed that EPS foliar application induced phenylalaline ammonia lyase and H2O2 accumulation. Expression profile analysis of the defense-related genes using qRT-PCR revealed the up-regulation of Superoxide dismutases (SOD), Peroxidase (POD), Pathogenesis-related protein 1 (PR-1) and Cytochrome P450 monooxyge-nase (CYP), while Catalase (CAT) and Plant defensin 1.2 (PDF1.2) were not induced. Results suggest that EPS may induce the elicitation of A. thaliana’s defense response against F. oxysporum, activating the Salicylic Acid pathway. Full article
Show Figures

Figure 1

17 pages, 7929 KiB  
Article
Enhanced Production of Photosynthetic Pigments and Various Metabolites and Lipids in the Cyanobacteria Synechocystis sp. PCC 7338 Culture in the Presence of Exogenous Glucose
by YuJin Noh, Hwanhui Lee, Myeongsun Kim, Seong-Joo Hong, Hookeun Lee, Dong-Myung Kim, Byung-Kwan Cho, Choul-Gyun Lee and Hyung-Kyoon Choi
Biomolecules 2021, 11(2), 214; https://doi.org/10.3390/biom11020214 - 03 Feb 2021
Cited by 5 | Viewed by 3910
Abstract
Synechocystis strains are cyanobacteria that can produce useful biomaterials for biofuel and pharmaceutical resources. In this study, the effects of exogenous glucose (5-mM) on cell growth, photosynthetic pigments, metabolites, and lipids in Synechocystis sp. PCC 7338 (referred to as Synechocystis 7338) were investigated. [...] Read more.
Synechocystis strains are cyanobacteria that can produce useful biomaterials for biofuel and pharmaceutical resources. In this study, the effects of exogenous glucose (5-mM) on cell growth, photosynthetic pigments, metabolites, and lipids in Synechocystis sp. PCC 7338 (referred to as Synechocystis 7338) were investigated. Exogenous glucose increased cell growth on days 9 and 18. The highest production (mg/L) of chlorophyll a (34.66), phycocyanin (84.94), allophycocyanin (34.28), and phycoerythrin (6.90) was observed on day 18 in Synechocystis 7338 culture under 5-mM glucose. Alterations in metabolic and lipidomic profiles under 5-mM glucose were investigated using gas chromatography-mass spectrometry (MS) and nanoelectrospray ionization-MS. The highest production (relative intensity/L) of aspartic acid, glutamic acid, glycerol-3-phosphate, linolenic acid, monogalactosyldiacylglycerol (MGDG) 16:0/18:1, MGDG 16:0/20:2, MGDG 18:1/18:2, neophytadiene, oleic acid, phosphatidylglycerol (PG) 16:0/16:0, and PG 16:0/17:2 was achieved on day 9. The highest production of pyroglutamic acid and sucrose was observed on day 18. We suggest that the addition of exogenous glucose to Synechocystis 7338 culture could be an efficient strategy for improving growth of cells and production of photosynthetic pigments, metabolites, and intact lipid species for industrial applications. Full article
Show Figures

Graphical abstract

15 pages, 6754 KiB  
Article
Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology
by Kang Hyun Lee, Ye Won Jang, Hansol Kim, Jang-Seu Ki and Hah Young Yoo
Biomolecules 2021, 11(2), 182; https://doi.org/10.3390/biom11020182 - 28 Jan 2021
Cited by 23 | Viewed by 2781
Abstract
Microalgae have been attracting attention as feedstock for biorefinery because they have various advantages, such as carbon fixation, high growth rate and high energy yield. The bioactive compounds and lutein contained in microalgae are known to be beneficial for human health, especially eye [...] Read more.
Microalgae have been attracting attention as feedstock for biorefinery because they have various advantages, such as carbon fixation, high growth rate and high energy yield. The bioactive compounds and lutein contained in microalgae are known to be beneficial for human health, especially eye and brain health. In this study, in order to improve the recovery of bioactive extracts including lutein from Tetraselmis suecica with higher efficiency, an effective solvent was selected, and the extraction parameters such as temperature, time and solid loading were optimized by response surface methodology. The most effective solvent for lutein recovery was identified as 100% methanol, and the optimum condition was determined (42.4 °C, 4.0 h and 125 g/L biomass loading) by calculation of the multiple regression model. The maximum content of recovered lutein was found to be 2.79 mg/mL, and the ABTS radical scavenging activity (IC50) and ferric reducing antioxidant power (FRAP) value were about 3.36 mg/mL and 561.9 μmol/L, respectively. Finally, the maximum lutein recovery from T. suecica through statistical optimization was estimated to be 22.3 mg/g biomass, which was 3.1-fold improved compared to the control group. Full article
Show Figures

Figure 1

21 pages, 880 KiB  
Article
Anti-Inflammatory, Antioxidant, and Wound-Healing Properties of Cyanobacteria from Thermal Mud of Balaruc-Les-Bains, France: A Multi-Approach Study
by Justine Demay, Sébastien Halary, Adeline Knittel-Obrecht, Pascal Villa, Charlotte Duval, Sahima Hamlaoui, Théotime Roussel, Claude Yéprémian, Anita Reinhardt, Cécile Bernard and Benjamin Marie
Biomolecules 2021, 11(1), 28; https://doi.org/10.3390/biom11010028 - 29 Dec 2020
Cited by 19 | Viewed by 3791
Abstract
Background: The Balaruc-les-Bains’ thermal mud was found to be colonized predominantly by microorganisms, with cyanobacteria constituting the primary organism in the microbial biofilm observed on the mud surface. The success of cyanobacteria in colonizing this specific ecological niche can be explained in part [...] Read more.
Background: The Balaruc-les-Bains’ thermal mud was found to be colonized predominantly by microorganisms, with cyanobacteria constituting the primary organism in the microbial biofilm observed on the mud surface. The success of cyanobacteria in colonizing this specific ecological niche can be explained in part by their taxa-specific adaptation capacities, and also the diversity of bioactive natural products that they synthesize. This array of components has physiological and ecological properties that may be exploited for various applications. Methods: Nine cyanobacterial strains were isolated from Balaruc thermal mud and maintained in the Paris Museum Collection (PMC). Full genome sequencing was performed coupled with targeted and untargeted metabolomic analyses (HPLC-DAD and LC-MS/MS). Bioassays were performed to determine antioxidant, anti-inflammatory, and wound-healing properties. Results: Biosynthetic pathways for phycobiliproteins, scytonemin, and carotenoid pigments and 124 metabolite biosynthetic gene clusters (BGCs) were characterized. Several compounds with known antioxidant or anti-inflammatory properties, such as carotenoids, phycobilins, mycosporine-like amino acids, and aeruginosins, and other bioactive metabolites like microginins, microviridins, and anabaenolysins were identified. Secretion of the proinflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8 appeared to be inhibited by crude extracts of Planktothricoides raciborskii PMC 877.14, Nostoc sp. PMC 881.14, and Pseudo-chroococcus couteii PMC 885.14. The extract of the Aliinostoc sp. PMC 882.14 strain was able to slightly enhance migration of HaCat cells that may be helpful in wound healing. Several antioxidant compounds were detected, but no significant effects on nitric oxide secretion were observed. There was no cytotoxicity on the three cell types tested, indicating that cyanobacterial extracts may have anti-inflammatory therapeutic potential without harming body cells. These data open up promising uses for these extracts and their respective molecules in drugs or thermal therapies. Full article
Show Figures

Graphical abstract

15 pages, 1551 KiB  
Article
Study of Morphological Features and Determination of the Fatty Acid Composition of the Microalgae Lipid Complex
by Vyacheslav Dolganyuk, Anna Andreeva, Ekaterina Budenkova, Stanislav Sukhikh, Olga Babich, Svetlana Ivanova, Alexander Prosekov and Elena Ulrikh
Biomolecules 2020, 10(11), 1571; https://doi.org/10.3390/biom10111571 - 19 Nov 2020
Cited by 26 | Viewed by 4058
Abstract
Microalgae are rich in nutrients and biologically active substances such as proteins, carbohydrates, lipids, vitamins, pigments, phycobiliproteins, among others. The lipid composition of the microalgae Chlorella vulgaris, Arthrospira platensis, and Dunaliella salina was screened for the first time. The proposed method [...] Read more.
Microalgae are rich in nutrients and biologically active substances such as proteins, carbohydrates, lipids, vitamins, pigments, phycobiliproteins, among others. The lipid composition of the microalgae Chlorella vulgaris, Arthrospira platensis, and Dunaliella salina was screened for the first time. The proposed method for purifying the lipid complex isolated from microalgae’s biomass involved dissolving the lipid-pigment complex in n-hexane for 4 h and stirring at 500 rpm. We found that the largest number of neutral lipids is contained in the biomass of microalgae Arthrospira platensis, fatty acids, polar lipids (glycerophospholipids), and unsaponifiable substances—in the biomass of microalgae Dunaliella salina, chlorophyll, and other impurities—in the biomass of microalgae Chlorella vulgaris. The developed method of purification of the fatty acid composition of the microalgae lipid complex confirmed the content of fatty acids in microalgae, which are of interest for practical use in the production of biologically active components. We also determined the potential of its use in the development of affordable technology for processing microalgae into valuable food and feed additives. Full article
Show Figures

Figure 1

18 pages, 3405 KiB  
Article
Protective Role of Spirulina platensis against Bifenthrin-Induced Reprotoxicity in Adult Male Mice by Reversing Expression of Altered Histological, Biochemical, and Molecular Markers Including MicroRNAs
by Mohamed Barkallah, Ahlem Ben Slima, Fatma Elleuch, Imen Fendri, Chantal Pichon, Slim Abdelkafi and Patrick Baril
Biomolecules 2020, 10(5), 753; https://doi.org/10.3390/biom10050753 - 12 May 2020
Cited by 25 | Viewed by 3314
Abstract
The potential reprotoxicity of bifenthrin remains unclear if only the common clinical indicators of reproductive disease are examined. The present study aimed to investigate the efficacy of Spirulina platensis, a microalga rich in antioxidant compounds, against bifenthrin-induced testicular oxidative damage in male [...] Read more.
The potential reprotoxicity of bifenthrin remains unclear if only the common clinical indicators of reproductive disease are examined. The present study aimed to investigate the efficacy of Spirulina platensis, a microalga rich in antioxidant compounds, against bifenthrin-induced testicular oxidative damage in male mice. At the first, we demonstrate that administration of bifenthrin resulted in a decline of testosterone level and in deterioration of sperm quality that was correlated with significant transcription changes of some specific mRNA and microRNA involved in cholesterol transport, testosterone synthesis, and spermatogenesis. At the biochemical level, we found that oxidative stress was obvious in the bifenthrin group, as evidenced by increase in malondialdehyde (MDA), protein carbonyls (PCO), reactive oxygen species (ROS), and nitrite oxide (NO) that was correlated with activation of genes related to mitochondrial apoptotic signal pathways. We then brought, for the first time to our knowledge, solid and complete experimental evidences that administration of mice with Spirulina extract was sufficient to protect against deleterious effects BF in testicular tissues by abrogating the change in antioxidant enzyme activities; the increase in MDA, PCO, and NO concentrations; and the altered expression level of miRNA and mRNA involved in spermatogenesis. We finally demonstrate that Spirulina restores the production of testosterone in mice as well as epididymal sperm viability and motility. These results suggest a potential antitoxic activity of Tunisian Spirulina deserving further attention. Full article
Show Figures

Figure 1

20 pages, 3784 KiB  
Article
Anti-Inflammatory Activity of Exopolysaccharides from Phormidium sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model
by Raffaella Margherita Zampieri, Alessandra Adessi, Fabrizio Caldara, Alessia Codato, Mattia Furlan, Chiara Rampazzo, Roberto De Philippis, Nicoletta La Rocca and Luisa Dalla Valle
Biomolecules 2020, 10(4), 582; https://doi.org/10.3390/biom10040582 - 10 Apr 2020
Cited by 29 | Viewed by 4895
Abstract
The Euganean Thermal District (Italy) represents the oldest and largest thermal center in Europe, and its therapeutic mud is considered a unique product whose beneficial effects have been documented since Ancient Roman times. Mud properties depend on the heat and electrolytes of the [...] Read more.
The Euganean Thermal District (Italy) represents the oldest and largest thermal center in Europe, and its therapeutic mud is considered a unique product whose beneficial effects have been documented since Ancient Roman times. Mud properties depend on the heat and electrolytes of the thermal water, as well as on the bioactive molecules produced by its biotic component, mainly represented by cyanobacteria. The investigation of the healing effects of compounds produced by the Euganean cyanobacteria represents an important goal for scientific validation of Euganean mud therapies and for the discovering of new health beneficial biomolecules. In this work, we evaluated the therapeutic potential of exopolysaccharides (EPS) produced by Phormidium sp. ETS05, the most abundant cyanobacterium of the Euganean mud. Specifically, Phormidium EPS resulted in exerting anti-inflammatory and pro-resolution activities in chemical and injury-induced zebrafish inflammation models as demonstrated using specific transgenic zebrafish lines and morphometric and expression analyses. Moreover, in vivo and in vitro tests showed no toxicity at all for the EPS concentrations tested. The results suggest that these EPS, with their combined anti-inflammatory and pro-resolution activities, could be one of the most important therapeutic molecules present in the Euganean mud and confirm the potential of these treatments for chronic inflammatory disease recovery. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

17 pages, 2273 KiB  
Review
Antiviral Cyanometabolites—A Review
by Hanna Mazur-Marzec, Marta Cegłowska, Robert Konkel and Krzysztof Pyrć
Biomolecules 2021, 11(3), 474; https://doi.org/10.3390/biom11030474 - 22 Mar 2021
Cited by 24 | Viewed by 4720
Abstract
Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts [...] Read more.
Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system’s response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms. Full article
Show Figures

Figure 1

15 pages, 900 KiB  
Review
A Review on Haematococcus pluvialis Bioprocess Optimization of Green and Red Stage Culture Conditions for the Production of Natural Astaxanthin
by Siti Nur Hazwani Oslan, Noor Fazliani Shoparwe, Abdul Hafidz Yusoff, Ainihayati Abdul Rahim, Chang Shen Chang, Joo Shun Tan, Siti Nurbaya Oslan, Kavithraashree Arumugam, Arbakariya Bin Ariff, Ahmad Ziad Sulaiman and Mohd Shamzi Mohamed
Biomolecules 2021, 11(2), 256; https://doi.org/10.3390/biom11020256 - 10 Feb 2021
Cited by 75 | Viewed by 9474
Abstract
As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various [...] Read more.
As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review discusses the further improvement made on astaxanthin production by providing an overview of recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth, and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized during the green stage. On the other hand, the significance of the nitrogen depletion strategy and other exogenous factors comprising salinity, illumination, and temperature are considered for the astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular processes that limit the growth or photosynthesis in the green stage could trigger the encystment process and astaxanthin formation during the red stage. This review provides an insight regarding the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from H. pluvialis. Full article
Show Figures

Figure 1

12 pages, 1891 KiB  
Review
An Insight into the Algal Evolution and Genomics
by Amna Komal Khan, Humera Kausar, Syyada Samra Jaferi, Samantha Drouet, Christophe Hano, Bilal Haider Abbasi and Sumaira Anjum
Biomolecules 2020, 10(11), 1524; https://doi.org/10.3390/biom10111524 - 06 Nov 2020
Cited by 8 | Viewed by 4766
Abstract
With the increase in biotechnological, environmental, and nutraceutical importance of algae, about 100 whole genomic sequences of algae have been published, and this figure is expected to double in the coming years. The phenotypic and ecological diversity among algae hints at the range [...] Read more.
With the increase in biotechnological, environmental, and nutraceutical importance of algae, about 100 whole genomic sequences of algae have been published, and this figure is expected to double in the coming years. The phenotypic and ecological diversity among algae hints at the range of functional capabilities encoded by algal genomes. In order to explore the biodiversity of algae and fully exploit their commercial potential, understanding their evolutionary, structural, functional, and developmental aspects at genomic level is a pre-requisite. So forth, the algal genomic analysis revealed us that algae evolved through endosymbiotic gene transfer, giving rise to around eight phyla. Amongst the diverse algal species, the unicellular green algae Chlamydomonas reinhardtii has attained the status of model organism as it is an ideal organism to elucidate the biological processes critical to plants and animals, as well as commercialized to produce range of bio-products. For this review, an overview of evolutionary process of algae through endosymbiosis in the light of genomics, as well as the phylogenomic, studies supporting the evolutionary process of algae was reviewed. Algal genomics not only helped us to understand the evolutionary history of algae but also may have an impact on our future by helping to create algae-based products and future biotechnological approaches. Full article
Show Figures

Figure 1

Back to TopTop