
Theoretical Population Biology 136 (2020) 22–30

D

t
e
g
c
f
2
m
t
a
t
H
o
m
a
v
g
a
D
2
r

h
0

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

A heuristicmodel of the effects of phenotypic robustness in adaptive
evolution
Emanuele Rigato, Giuseppe Fusco ∗

epartment of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy

a r t i c l e i n f o

Article history:
Received 22 June 2020
Available online 19 November 2020

Keywords:
Computer simulation
Environmental instability
Genetic mutation
Genotype–phenotype map
Phenotypic evolution
Quasispecies model

a b s t r a c t

A recent theoretical, deterministic model of the effects of phenotypic robustness on adaptive evo-
lutionary dynamics showed that a certain level of phenotypic robustness (critical robustness) is
a required condition for adaptation to occur and to be maintained during evolution in most real
organismal systems. We built an individual-based heuristic model to verify the soundness of these
theoretical results through computer simulation, testing expectations under a range of scenarios for
the relevant parameters of the evolutionary dynamics. These include the mutation probability, the
presence of stochastic effects, the introduction of environmental influences and the possibility for some
features of the population (like selection coefficients and phenotypic robustness) to change themselves
during adaptation. Overall, we found a good match between observed and expected results, even for
evolutionary parameter values that violate some of the assumptions of the deterministic model, and
that robustness can itself evolve. However, from more than one simulation it appears that very high
robustness values, higher than the critical value, can limit or slow-down adaptation. This possible
trade-off was not predicted by the deterministic model.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

Phenotypic robustness is the quality of a biological system
o maintain its phenotype in spite of internal (e.g., genetic) or
xternal (e.g., environmental) modifications (Wagner, 2011; Klin-
enberg, 2019). This quality is widespread in living systems and
an be observed at different levels of biological organization,
rom molecules to whole organisms (Kitano, 2004; Stelling et al.,
004; Wagner, 2005). Since phenotypic robustness to genetic
utations reduces the rate of appearance of favourable pheno-

ypic mutations, at the level of the organism this might seem
trait that hinders adaptation by natural selection, by reducing

he available variation for directional natural selection to act on.
owever, contrary to this expectation, deriving from the focus
f classic population genetics theory on adaptation from new
utations (Barrett and Schluter, 2008), recent theoretical work
nd several experimental studies on macromolecules have pro-
ided evidence for the capacity of this feature of the organism’s
enotype–phenotype (G–P) map to enhancing adaptation (Gibson
nd Reed, 2008; Wagner, 2008; Rodrigues and Wagner, 2009;
raghi et al., 2010; Hayden et al., 2011; Barve and Wagner,
013; Stiffler et al., 2015; Wei and Zhang, 2017). Even more
ecently, experimental evolution studies on E. coli have shown
that phenotypic robustness, through the accumulation of cryptic
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genetic variation, can facilitate adaptation at the level of a whole
organism (Rigato and Fusco, 2016; Zheng et al., 2019). Phenotypic
robustness can foster adaptation by several modes, for instance
(i) through the accumulation of cryptic genetic variation (Wag-
ner, 2012), so that in a new environment or in a new genetic
background, phenotypically unexpressed genetic variation may
reveal accidentally ‘‘pre-adapted’’, or ‘‘exapted’’ variants (Hayden
et al., 2011), or (ii) by means of the scattering of genotypes
with the same phenotype through the genotype space, which
allows the population to access a greater number of new pheno-
types upon mutation, increasing the probability of finding pheno-
types that happen to have higher fitness (Rodrigues and Wagner,
2009; Zheng et al., 2019). In addition, (iii) robustness can support
the spread of already present favourable phenotypic variants
by dampening the probability of mutation, which increases the
evolutionary stability of favourable phenotypic variants (Rigato
and Fusco, 2020).

Focusing on this third mode, in a recent study (Rigato and
Fusco, 2020), we elaborated on a classical mathematical formal-
izations of evolutionary dynamics, the quasispecies model (Eigen
et al., 1989), and showed that a certain level of phenotypic robust-
ness is not only a favourable condition for adaptation to occur,
but that it is also a required condition for short-term adaptation
in most real organismal systems. This appears as a threshold
effect, i.e. as a minimum level of phenotypic robustness (or,
critical robustness) below which evolutionary adaptation cannot
consistently occur or be maintained, even in the case of sizably

https://doi.org/10.1016/j.tpb.2020.11.001
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election coefficients and in the absence of any drift effect. This
hird mode is based on a generic property of the G–P map, i.e. that
ultiple genotypes can map on the same phenotype, which is

argely independent from other structural features of the neutral
etworks in the genotype space (Ahnert, 2017).
These theoretical results, focusing on the instantaneous ability

f the population to adapt, were obtained under the assumptions
f some fixed evolutionary parameters (e.g., mutation rate, selec-
ion coefficient) and large, virtually infinite, population size. In
ther words, the analytical model was completely deterministic
nd concentrated on short-term effects.
Here we built and analysed an individual-based heuristic

odel to put to test the predictions of the deterministic model
y Rigato and Fusco (2020) through computer simulation, verify-
ng its expectations under a range of scenarios for the relevant
arameters of the evolutionary dynamics, some of which vio-
ate specific assumptions of the model. Parameters include the
utation probability, the presence of stochastic effects, the intro-
uction of environmental influences and the possibility for some
eatures of the population (such as selection coefficients and
henotypic robustness) to change themselves during adaptation.

. The model

Model description follows the ODD protocol for illustrating
ndividual- and agent-based models (Grimm et al., 2006, 2010).
he model was implemented in NETLOGO v. 5.0.3, (Wilensky,
999; Tisue and Wilensky, 2004) and the scripts are available in
he Supplementary material.

.1. Purpose

The main purpose of the model is to explore the effects of
henotypic robustness in adaptive evolution, testing the influ-
nces of different sources of stochasticity (finite population size,
nvironmental variation) with respect to the predictions of a
eterministic model (Rigato and Fusco, 2020), which is a phe-
otypic version of the classic population genetics quasispecies
odel (Eigen et al., 1989). This is implemented by simulating
henotypic evolution of a finite population of entities under
ariable conditions.

.2. Entities, state variables and timing

Entities of the model are asexual individuals. Each individual
has a genotype (not modelled) and a phenotype that includes
ts absolute fitness (number of offspring, Wi) and phenotypic
obustness (ρi). Following Rigato and Fusco (2020), we adopted
narrow, quantitative definition of phenotypic robustness, that

s the probability that, across one generation, mutation of a given
enotype g takes to a genotype g’ that exhibits the same phe-
otype of g, or, with other words, the probability that a mu-
ation has no phenotypic effect. Different genotypes can map
n the same phenotype and there are no fitness costs directly
ssociated with phenotypic robustness. Depending on the simula-
ion, state variables are population mean relative fitness (w) and
mean robustness (ρ). Relative fitness is computed with respect
o a hypothetical maximum fitness value (Wmax), corresponding
o a phenotypic optimum attainable in a given environment,
hus wi = Wi/Wmax. The model is time-discrete, one time step
orresponding to one generation, and generations do not overlap.
23
Fig. 1. Schematic of the implemented individual-based model to study the
effects of phenotypic robustness on the adaptive evolution in populations with
finite size and under different evolutionary parameters. Individual organisms re-
produce clonally and can mutate. The genotype–phenotype map, where multiple
genotypes can map on the same phenotype, allows for genetic mutations with
no phenotypic effects. Modifications in the environmental conditions (and thus
in the shape of the adaptive landscape) are also considered.

2.3. Process overview

The process is schematically diagrammed in Fig. 1. Each cycle
(generation) starts with a parent population of N individuals.
Parents reproduce according to their fitness value and die. Each
single offspring can exhibit a mutated genotype with probability
η, and, conditional on the mutated genotype, a mutated pheno-
type with probability 1 − ρ. The magnitude of the phenotypic
mutation can be fixed or modelled with a random variable, de-
pending on the simulation. If the resulting offspring population is
larger than N, this is reduced to size N through random elimina-
tion of the exceeding entities. Offspring of one generation are the
parents of the succeeding generation. In simulation with changing
environmental conditions, individual fitness values are modified
before they reproduce.

2.4. Design concepts

Phenotypic evolution, measured as changes in the distribu-
tion of phenotypic values, is traced across generations in sim-
ulated populations. Population dynamics, in particular with
respect to adaptation, emerge from the combined effects of hered-
ity, genetic and phenotypic mutation (the latter, conditional on
phenotypic robustness), natural selection (differential fecundity
fitness among individuals) and demographic processes related
to population size. Depending on the simulation, stochasticity
may have effects on the occurrence of genetic and phenotypic
mutations, the magnitude of phenotypic mutation, survival and
environmental change.
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.5. Initialization

Parameters and their initial values depend on the simulation
see below).

.6. Input

The model has no external input; parameters are updated
ccording to internal rules of the model.

.7. Sub-model ‘‘reproduction’’

At each generation, each individual i clonally produces Wi
offspring and dies.

2.8. Sub-model ‘‘mutation’’

The genotype can mutate with probability η and if a ge-
netic mutation occurs, the phenotype can mutate with probability
1 − ρ. Depending on the simulation, mutation can affect only
fitness or both fitness and phenotypic robustness. In the latter
case, the new parameters of the individual are modified indepen-
dently. Individual phenotypic values are updated according to the
following rules:

• in simulations with fixed selection coefficient s (Simulations
1 and 2), the new mutated fitness in individual i is set to
Wi

′
= W · (1 + s). The sign of s can be positive with

probability τ = 0.17 and negative with probability 1 − τ .
Probability τ derives from assuming an optimal mutation’s
phenotypic effect on the Fisher’s (1930) standardized scale
(Orr, 2000). However, different values of τ only change the
kinematics of the process, not its most salient feature in
these simulations, i.e. the tendency towards either higher or
lower values of mean fitness in proportion to ρ.

• in simulations with variable selection coefficients (Simula-
tions 3 and 4), the new mutated fitness in individual i is set
to a value ranging from 0 to the fitness maximumwith equal
probability, Wi

′
= U[0, Wmax]. Accordingly, both the mag-

nitude and probability of fitness gain in mutants decrease
as the population approaches a posited value of maximum
fitness, as expected under Fisher’s (1930) geometric model
(see also Orr, 1998, 2000), or, equivalently, on the basis of
the more general extreme value theory (Orr, 2005).

• in the simulation with variable robustness (Simulation 4),
the new mutated robustness value is set to a value ranging
from 0 to 1 with equal probability, ρi

′
= U[0, 1].

he different updating rules in the four simulation are functional
o keep constant selection coefficients in Simulations 1 and 2,
nd to allow for declining selection coefficients as adaptation
roceeds in Simulations 3 and 4. However, it should be noted that
hese choices also affect a key feature of the underlying (although
ot explicitly modelled) G–P map. Updating rules in Simulations
and 2 entail a moderately correlated G–P map (Greenbury

t al., 2016), as upon the mutation the new fitness value of the
ndividual is influenced by the localization of the population in
he phenotype space. Differently, updating rules in Simulations
and 4 entail a scarcely correlated G–P map, or equivalently, a
ery rugged fitness landscape, as upon the mutation the original
itness (or robustness) value of the individual does not influence
he probability distribution of the new value. The choice of adopt-
ng the most unstructured G–P map compatible with the stability
f the parameters we wanted to test in each run derives from the
ocus of the deterministic model on a very generic property of the
–P maps, the many-to-one relationship between genotype and
henotype, which is largely independent from other structural
24
aspects of the map. For whole-genome genotypes, as targeted by
the deterministic model, the updating rules of the heuristic model
also take account of the high probability of multiple mutations
per generation in a high-dimensional genotype space (Gavrilets,
1997; Drake et al., 1998; Aguirre et al., 2018) and the non-
linearity of the G–P maps (Ahnert, 2017; Green et al., 2017; Sailer
and Harms, 2017).

2.9. Sub-model ‘‘environmental change’’

Environmental change is implemented as a negative effect
on individual fitness (environmental deterioration, sensu Fisher,
1930). The magnitude of the negative effect is quantified as a
parameter (X) that is subtracted to the individual absolute fitness
values (Wi) before reproduction. X is modelled as a discrete
uniform random variable (U[a,b]), with a different range ([0, 0],
[0, 2], [0, 4], or [0, 6]) and mean (0, 1, 2, or 3) in different runs.
Thus, the effect of X combines environmental disturbance with
environmental instability.

2.10. Sub-model ‘‘maximum population size’’

At each generation, if offspring population is larger than N, the
opulation is reduced to size N through random elimination of
he exceeding entities. The surviving entities are going to be the
arents of the succeeding generation.

. Simulations

The deterministic model predicts a minimum level of pheno-
ypic robustness for adaptation to occur, i.e. for the population
ean fitness to increase or to be maintained. The value of this
ritical robustness (ρc) depends on the magnitude of the selection
oefficient (s) and on the mutation probability per genome per
eneration (η) according to the following equation (Rigato and

Fusco, 2020)

ρc =
(1 + s) η − s

(1 + s) η
(1)

To test the soundness of this model under different combinations
of stochastic effects, we run four simulations. Simulations went
on for 100–500 generations. Each simulation included several
runs, each characterized by different initialization parameters,
and multiple replicas for each run. Parameters were explored in
ranges considered particularly challenging for the model, i.e. for
values that significantly departed from the assumptions of the
deterministic model, such as quite small population sizes, high
selection coefficients and variable selection regimes. Values of
mutation probability, instead, were chosen in line with observed
data in real organisms.

4. Results

4.1. Existence of ρc for populations of finite size: Simulation 1

This simulation was aimed at testing the existence of a mini-
mum level of phenotypic robustness below which the population
mean fitness (the state variable) does not increase significantly
across time (generations). This was implemented by fixing the
selection coefficient s while exploring various parameters com-
binations of population size N, genotype mutation probability
η and phenotypic robustness ρ. Adaptation was said to have
ccurred when a significant increase in the population mean
elative fitness (one-tail Student’s t-test, α = 0.05) was recorded

within the 500 generations.
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• Fixed parameters (equal among runs): s = 0.1; Wmax = 30
• Fixed parameters (different among runs): η = 0.8, 0.9, 1.0;

N = 50, 100, 500, 1000; ρ = 0.70, 0.75, 0.80, 0.85, 0.90,
0.95, 0.99

• Internal variables: Wi (initial value = 10 for all individuals),
W

• State variable: w

• Generations: 500
• Runs: 84 (3 × 4 × 7; η, N, ρ values, respectively)
• Replicas: 10 per run

bservations. The 84 runs (Fig. 2) show no adaptation for N = 50,
nd for N = 100 there is adaptation only at ρ = 0.99. For
arger-size populations (N = 500 and 1000), adaptation occurs
onsistently for ρ ≥ 0.90. Thus, the robustness threshold at these
opulation sizes seems to be located in between 0.85 and 0.90, a
ange of values very close to that expected by the deterministic
odel (0.89–0.91). As a general pattern, adaptation occurs more
onsistently to the increase of both η and N, although the latter
eems to be a more influential parameter. In parallel, the higher
he robustness, the faster the adaptation, when it occurs, or the
lower and more limited the decrease in the mean fitness when
daptation does not occur. Among the larger-size populations
N = 500 and 1000), those with the highest robustness ρ = 0.99
re often outperformed by populations with ρ = 0.95 and 0.90.
t seems that while robustness above ρc enhances adaptation
n proportion to its value, there is an upper limit of ρ above
hich the boosting effect declines (Fig. 6). This effect was not
nticipated on the basis of the deterministic model.
Finally, as expected by the deterministic model, at N = 1000

he critical robustness for a mutation probability of η = 0.8 is
ower than that at η = 0.9 and η = 1.0, so that at η = 0.8 we
bserve adaptation even at ρ = 0.85. This effect is visible also
t N = 500, although adaptation at η = 0.8 and ρ = 0.85 is

statistically not significant (p = 0.08) after 500 generations.
Overall, what can be observed from Simulation 1 is that phe-

notypic robustness enhances adaptation rate in populations with
ρ > ρc and buffers the population mean fitness decrease in
populations with ρ < ρc .

4.2. Value of ρc in populations of finite size: Simulation 2

Simulation 2 adopted the same design of Simulation 1, but
recorded the minimum level of robustness below which adapta-
tion was not maintained or did not increase (one-tail Student’s
t-test, α = 0.05, on fitness at generation 500) in runs with
variable ρ, under different combinations of s and η in populations
with nearly constant finite size N. The minimal value for the
parameter s was set to 0.02, so to have sN≥1, however selec-
tion must be considered week with respect to random drift for
the smallest values in the parameter interval. Observed ρc were
compared with the values predicted by the deterministic model.

• Fixed parameters (equal among runs): N = 500; Wmax = 30
• Fixed parameters (different among runs): η = 0.001, 0.10,

0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99; s = 0.02,
0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10; ρ = 0.001, 0.10,
0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.85, 0.90, 0.95, 0.99

• Internal variables: Wi (initial value = 10 for all individuals),
W

• State variable: w

• Generations: 500
• Runs: 1287 (11 × 9 × 13; η, s, ρ values, respectively)
• Replicas: 10 per run
25
Observations. Overall, the 99 ρc values obtained through simula-
tion are fairly close to the corresponding values on the surface
of the expected ρc in the parameter space defined by s and η
nder Eq. (1) (Fig. 3). The deterministic model explains a large
raction of the observed variance in ρc (r2 = 95.08%, n = 99).
In general, there is a tendency for the predicted values to be
slightly higher than the observed, with residuals declining with
increasing η. This depends on the fact than in the simulation,
at variance with the deterministic model, new mutations are
continuously introduced, with a transient lowering effect on the
average fitness at each generation before selection. This slightly
amplifies the s values, allowing adaptation at smaller ρ than
expected, in particular at small η (see Eq. (1)).

4.3. Effect of ρ on the limits to adaptation: Simulation 3

Simulation 3 aimed at testing the maximum population mean
fitness that is reachable in finite size populations with different
levels of robustness. Here, both the magnitude and the proba-
bility of fitness gain in the mutants decrease as the population
approaches the maximum average fitness, as entailed by Fisher’s
(1930) geometric model (Waxman and Welch, 2005).

• Fixed parameter (equal among runs): Wmax = 30
• Fixed parameters (different among runs): η = 0.8, 0.9, 1.0;

N = 50, 100, 500, 1000; ρ = 0.70, 0.75, 0.80, 0.85, 0.90,
0.95, 0.99

• Internal variables: Wi (initial value = 15 for all individuals),
W

• State variable: w
• Generations: 500
• Runs: 84 (3 × 4 × 7; η, N, ρ values, respectively)
• Replicas: 10 per run

Observations. In all runs (Fig. 4), the level of adaptation reaches
a plateau, whose height with respect to the maximum value
attainable is proportional to the level of robustness, ρ. The ampli-
tude of the oscillations around the plateau value decreases with
both population size, N, and with robustness, ρ. At variance with
Simulation 1, there is no declining fitness in populations with low
robustness because population can settle on a plateau (at a given
distance from the fitness maximum) which grants sufficiently
high coefficients of selection for any ρ value. The initially very
high selection coefficients explain the fast achievement of the
plateau in all runs. The probability of mutation, η, does not visibly
affect the elevation of the plateaus, whereas the population size,
N, has the effect of slightly lifting the plateaus. Although the
relative height of the plateaus reached in each run is signifi-
cant for our argument, with the higher elevations attained by
population with higher ρ, their absolute values are not, because
they depend on the specific modelling of the variation of the
coefficients of selection as adaptation progress (in our heuristic
model, a sampling from a uniform distribution, see Section 2.8).

Like in Simulation 1, adaptive dynamics with the highest ro-
bustness, ρ = 0.99, show a behaviour slightly uneven with
respect to lower robustness values. Although simulations with
ρ = 0.99 reach the highest plateaus, the rise to the plateau is
slightly retarded with respect to simulations with lower ρ (Fig. 6).
This effect was not predicted by the deterministic model.

4.4. Robustness evolvability: Simulation 4

This simulation aimed at probing the evolvability of pheno-
typic robustness itself, under different environmental conditions.
This was implemented by fixing both genotype mutation prob-
ability η and population size N, while exploring the effect of
different levels of environmental deterioration and instability,
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Fig. 2. Adaptation dynamics in populations with different robustness (ρ), under fixed selection coefficient (s = 0.1) and with different population size (N) and
enotype mutation probability (η) during 500 generations (Simulation 1). Lines are means over 10 replicas and the grey areas show the standard error of the means.
daptation is stated to have occurred if at the end of the 500 generations the populations reached a mean relative fitness significantly higher (p < 0.05) than the
nitial fitness value, set at 1/3 of the relative fitness with respect to an optimal phenotype (w = 1).
d
F

epresented by the random variable X. As in Simulation 3, both
he magnitude and the probability of fitness gain in the mutants
ecrease as the population approaches the maximum average
itness. However, at variance with all the preceding simulations,
henotypic robustness itself could vary among individuals and
volve across generations. Population mean phenotypic robust-
ess thus adds to population mean relative fitness as a new state
ariable.

• Fixed parameters (equal among runs): η = 1.0; Wmax = 30;
N = 1000

• Fixed parameters (different among runs): X = 0, U[0, 2],
U[0, 4], U[0, 6] (with X = 0, 1, 2, 3, respectively)

• Internal variables: Wi (initial value = 10 for all individuals);
ρi (initial value = 0.1 for all individuals)

• State variables: w, ρ
• Generations: 100
 r

26
• Runs: 4
• Replicas: 10 per run

Observations. The higher the level of environmental deterioration
(X), the lower the mean fitness value that a population can
reach (Fig. 5). A similar pattern is observable in the evolution
of robustness, which increases more slowly and reaches lower
values in more degraded environments.

During adaptation, natural selection promotes a simultaneous
increase in fitness and robustness towards a maximum value
attainable for the specific level of environmental deterioration.
However, while for X = 0 population mean fitness and mean
robustness increase in parallel until generation 100, their values
at each generation closely matching the combinations (w, ρ)
erived through Simulation 3 (with N = 1000 and η = 1.0;
ig. 4), in case of environmental deterioration (X ≥ 1) fitness
eaches a limit value faster than robustness.
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Fig. 3. Values of critical robustness (ρc ) in populations of size N = 500, with different mutation probability (η) and different fixed selection coefficients (s) (Simulation
). The observed critical robustness (dots) is the minimum value of robustness (among the set of values 0.001, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.85,
.90, 0.95, 0.99) for which adaptation has occurred or has been maintained after 500 generations, i.e. for which the populations scored a final mean fitness not
ignificantly below the initial fitness value (p < 0.05). Critical robustness values obtained through simulation are to be compared with the corresponding points on
he surface of the expected ρc values derived by the deterministic model.
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The main result of this simulation is to display the evolvability
f robustness itself, under a range of different environmental con-
itions. However, the simulation also exposes the limits that the
nvironment can pose to adaptation. Very clearly, and expectedly,
hese appear as constraints to the maximum fitness attainable
w). But beyond that, it is also apparent that very high robustness
is less favourable in degraded and unstable environments and
that under these conditions robustness has a less marked positive
effect on fitness.

5. Discussion

Through computer simulation, we studied the effects of phe-
otypic robustness in the evolution of populations of different
ize and under different evolutionary parameters, and compared
he results of the simulations with the predictions of a deter-
inistic model by Rigato and Fusco (2020), which introduces
critical level of phenotypic robustness below which adapta-

ion cannot regularly occur or be maintained, even in virtually
nfinite-size populations. These limits to adaptation are anal-
gous to those posed by the so-called error threshold of the

original (genotype-based) quasispecies model (Eigen and Schus-
ter, 1979; Wilke, 2005). This phenomenon, together, with the
related Muller’s ratchet in finite populations (Muller, 1964; Haigh,
1978; Wagner and Krall, 1993), is an effect of mutation rates
beyond a certain level that impedes populations to reach and/or
reside on a fitness landscape peak, and disperse them over the
sequence space. However, critical robustness differs from the
latter for its focus on the minimal level of phenotype resistance to
mutations that permits adaptation, rather than on the maximum
permissible mutation rate to avoid an error catastrophe, i.e. the
oss of the favourable genotype(s) through mutation (Eigen and
chuster, 1979), or analogously for finite populations, a muta-
ional meltdown, i.e. a decay in fitness owing to the accumulation
f deleterious mutations (Lynch and Gabriel, 1990).
In agreement with Rigato and Fusco’s (2020) theoretical

odel, we show that a minimum level of phenotypic robustness
s required for adaptation to occur or to be maintained, also in
opulations subject to the stochastic effects of a relatively small
27
inite size (Simulation 1), and that these observed critical values
f robustness are close to those derived by the deterministic
odel for a large part of the parameter space (Simulation 2).
lthough in populations of very small size (N ≤ 100), in practice
here is no ρ value able to effectively contrast the dominant
ffect of drift (Ohta, 1992), even for the very large selection
oefficient modelled (s = 0.1), nonetheless, different levels of
robustness may have an effect on evolutionary dynamics irre-
spective of adaptation: phenotypic robustness higher than ρc
enhances adaptation rate, whereas ρ below those values buffers
the progressive loss in population mean fitness in proportion to
ρ. The implications of considering the quasispecies model in the
context of finite-size populations have been explored, although
with different focuses, in other analytical and numerical analyses
(Park et al., 2010; Lorenz et al., 2013). Among other results, these
works showed that time-averaged fitness is expected to be lower
for finite populations than it is for infinite populations. Our results
are silent on these long-term effects, since Simulations 1 and 2
were designed to explore the kinematics of adaptation under dif-
ferent robustness conditions, rather than its ‘final’ achievement.
However, they are nonetheless compatible with these previous
results.

The enhancing effect of robustness on adaptation appears
clearly also when considering a reduction in the average fitness
gain upon mutation as the population approaches the maxi-
mum average fitness (Fisher’s geometric model, Simulation 3) and
when introducing negative effects on fitness due to environmen-
tal deterioration and instability (Simulation 4). In both cases, the
level of adaptation reaches value directly proportional to the level
of robustness. There are however limits to the maximum attain-
able fitness with respect to a theoretical optimum. This is because
the phenotypic robustness needed for a given advantageous phe-
notype to spread throughout the population is inversely related to
its selective advantage (s) in any given moment, as Eq. (1) shows.
While the population mean fitness get closer to the optimum, the
selection coefficients become progressively smaller, up to a point
where the population can no longer increase its fitness, because
ρ falls below the critical value needed for adaptation.

Alongside these broad computational confirmations of the de-
terministic model, there are effects of robustness on adaptation
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hat were not predicted by it. Simulations 1 and 3 show that
ery high robustness values, beyond the critical value, can limit or
low-down adaptation (Fig. 6). These divergences can stem from
everal features that distinguish the theoretical model from the
omputational model, but one appears to be especially relevant.
mong the different ways in which phenotypic robustness can in-
luence adaptation, Rigato and Fusco’s (2020) deterministic model
oncentrated on the competence of robustness to support the
pread of already present favourable phenotypic variants, while
vidence of the enhancing effect of robustness on adaptation pro-
uced by other means, e.g. through the accumulation of cryptic
enetic variation, was provided by other studies (Hayden et al.,
011; Rigato and Fusco, 2016; Zheng et al., 2019). However, de-
pite our simulations do not explicitly contemplate the modelling
f the evolution of the genetic structure of the population, some
spects of longer-term evolutionary dynamics were inevitably
ntroduced. Among these, and most relevant here, is the prob-
bility that new favourable phenotypic mutations appear in the
28
opulation during the process of adaptation. In simulated popu-
ations, this introduces a trade-off between the positive effect of
obustness in facilitating the spread of favourable mutations, and
he negative effect of making the appearance of such mutations
ess frequent. This trade-off was not contemplated in the deter-
inistic model, but it can be of relevance in real evolutionary
ynamics. Although standing variation may be of paramount im-
ortance in the process of adaptation (Matuszewski et al., 2015;
ai et al., 2019), undoubtedly there are circumstances where
daptation critically depends on a supply of de-novo mutations
Exposito-Alonso et al., 2018).

The effects of environmental changes during adaptation ob-
erved in the simulations can be compared with the findings of
ther studies on the subject, both analytical and computational.
ith regard to fitness, our observation that high levels of en-
ironmental instability limit the population mean fitness is in
greement with the predictions of many genetic models, which
how that frequent environmental changes prevent populations
rom reaching a fitness peak (e.g., Fisher, 1930; Trubenová et al.,
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f average environmental deterioration during 100 generations (Simulation 4). Lines are means over 10 replicas and bars are the standard error of the means.
Fig. 6. Effects of very high robustness on adaptation. Left, relative fitness after 500 generations in populations of size N = 1000 with different mutation probably
rom Simulation 1. The boosting effect of robustness on adaptation significantly declines for ρ = 0.99 (one-tail Student’s t-tests, p < 0.0001). Right, average rate
f adaptation (relative fitness increment per generation) within the first 10 generations in populations of size N = 1000 with different mutation probability from
imulation 3. Adaptation is significantly retarded for ρ = 0.99 (one-tail Student’s t-tests, p < 0.0052). Points are means over 10 replicas and bars are the standard
rror of the means.
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019). With regards to robustness, several theoretical works have
ddressed the question of under what conditions natural selec-
ion would lead to an increased robustness, but the conclusions
hey reached are not all congruent or easily comparable. For
nstance, Félix and Wagner (2008) argued that from theoretical
iterature (see references therein) it emerges that high robust-
ess tends to evolve more easily when perturbations (either
enetic or environmental) are abundant. We observed robustness
o increase in all the conditions we tested, and with respect
o the level of environmental disturbance we found the oppo-
ite relationship. While in a stable environment, and possibly in
n environment that changes slowly and monotonically through
ime, phenotypic robustness evolves to reach values close to 1,
n case of a repeatedly and unpredictably changing environment
obustness does not reach such high values. However, it should
e noted that in our simulation the evolutionary change in ro-
ustness is accomplished by modifying a single feature of the
enotype–phenotype map, that is the fraction of genotypes that
ap on the same phenotype. This does not exclude that other
ualities of robustness, like the capacity to accumulate cryptic
29
enetic variation, may flourish under different environmental
onditions. A different prediction was formulated by Hordijk and
ltenberg (2020), by analysing a computational model for the
volution of ontogeny based on cellular automata. They showed
hat developmental systems evolving high modularity tend also
o evolve mutational robustness, while systems where the pro-
uction of a phenotype depends on complex interaction of many
ontributing components do not. We did not explicitly modelled
evelopment in our simulations, but, like in Rigato and Fusco
2020), we assumed a G–P map with extended pleiotropy (ubiq-
itous pleiotropy; Visscher and Yang, 2016) and with almost every

trait affected by many genes (omnigenic model; Boyle et al., 2017).
Thus, we can probably state that our simulations showed the
evolution of robustness far from the case of modularity.

Our results are more in agreement with the arguments of de
Visser et al. (2003), who claimed that high mutation rates, large
populations, and asexual reproduction (three conditions matched
by our model) generally favour the evolution of adaptive robust-
ness, i.e. a form of robustness where the buffering of phenotype

with respect to some source of variation has been a direct target
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f natural selection, rather than having been an indirect by-
roduct of selection on other traits (intrinsic robustness). While
e did not probe the evolution of robustness in the opposite con-
itions, our simulation clearly produce the evolution of adaptive
obustness, because fitness cannot increase if not accompanied by
n increase of robustness.
In conclusion, these simulations prove the positive effects of

obustness on adaptation under less idealistic conditions with
espect to those assumed by a theoretical model and show the
volvability of robustness with different levels of environmen-
al perturbation. These results, being based on a very generic
roperty of the G–P maps, the many-to-one relationship be-
ween genotype and phenotype, can contribute to explain why
obustness is so widespread in living systems.
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