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role in the formal mathematical modelling of ad-
aptation and speciation and in the didactics of the 
basic principles of evolutionary theory (Svensson 
& Calsbeek, 2012). Furthermore, the notion of fit-
ness landscapes, aptly modified and expanded, has 
found numerous applications outside evolutionary 
biology, as for instance in biochemistry, computer 
sciences, engineering, and economics (Gavrilets, 
2010). More importantly here, it inspired Conrad 
Hal Waddington (1939, 1940) to adopt a landscape 
visualization in a different biological discipline 
which, at a different temporal scale, also deals 
with time dynamics, i.e. development. This chap-
ter reviews and discusses the use of the landscape 
metaphor in development, rather than in evolution, 
analysing its relationship with experimental work 
and theoretical modelling.

We start by defining a landscape as a function of 
multiple variables and show how this can be inter-
preted as a dynamical system. From the perspec-
tive of dynamical systems modelling, we move to 
analyse Waddington’s ‘epigenetic landscape’ and 
landscape representations in current developmen-
tal biology literature. Then we delve into the prob-
lem of models and metaphorical representations 
in science, which stands out as a crux for assessing 
the use of landscapes in development, and analyse 
the somewhat parallel stories of Wright’s and Wad-
dington’s landscapes. We conclude with some ide-
as on developmental landscapes in the context of 
visualization in science, with a focus on theoretical 
work in developmental biology.

Chapter 7

The landscape metaphor  
in development
Giuseppe Fusco, Roberto Carrer, and Emanuele Serrelli

Introduction

Sewall Wright’s graphical visualization of the fit-
ness landscape (Wright, 1932) is reputed to be one 
of the most famous metaphors in the history of 
biology (Dietrich & Skipper, 2012). On that hilly 
landscape, populations of organisms are repre-
sented as occupying a specific position (or a set 
of positions, one for each individual) in a space 
of descriptors, which depends on their genetic or 
phenotypic constitution. Different positions of this 
space are characterized by distinct fitness values, 
which collectively describe a fitness surface whose 
shape affects the future evolution of the popula-
tion itself. Evolutionary change is visualized as the 
population change in the occupancy of the fitness 
landscape.

Wright’s metaphor has met with criticism from 
both philosophers and theoretical biologists, who 
pointed out its ambiguous interpretation, the com-
plications with translating it into rigorous math-
ematical models, and the inability of its standard 
three-dimensional visualization to capture the 
properties of real multidimensional fitness func-
tions (Gavrilets, 2004; Kaplan, 2008; Pigliucci, 2012; 
Pigliucci & Kaplan, 2006; Provine, 1986). Mean-
while, other scholars have defended the value of 
the landscape metaphor in spite of technical dif-
ficulties with its application, at least as a heuristic 
(Plutynski, 2008; Ruse, 1996; Skipper, 2004; Skipper 
& Dietrich, 2012).

Where all agree is that during the last eighty years 
the fitness landscape metaphor has played a central 
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it is not true that any function is a landscape, as the 
homonymy with (topographic) maps, which are 
representations of geographic landscapes, might 
suggest. For instance, a function which associates 
each point of its domain to a set of values (rather 
than only to one) is a map that is not a landscape, 
under the above definition.

A key property of landscape functions (hence-
forth, landscapes), as we have defined them, is 
that they are scalar fields, i.e. functions that assign 
a real numerical value to every point in a space. In 
the regions of the domain where the scalar field is 
differentiable, this is associated with a vector field, 
that is, its gradient. The gradient of a scalar field is a 
function that assigns to every point of its domain a 
vector which points in the direction of the greatest 
rate of increase of the scalar field and has a magni-
tude equal to the rate of that increase (Figure 7.2). In 
other words, the vectors indicate the direction and 
degree of inclination of the maximum slope at each 
point in the landscape.

Landscapes and dynamical systems

Because of the association of scalar fields with vec-
tor fields, landscapes have close connections with 
dynamical systems.

As a mathematical formalization, a dynamical 
system consists of a rule that governs the temporal 
evolution of a set of system variables. At any given 
time, a dynamical system has a state, defined by 
the values of its system variables, and the temporal 

What is a landscape?

A precise definition of ‘landscape’ is the necessary 
starting point for any investigation on this visuali-
zation in scientific research.

Let us define a landscape as a mathematical 
function which associates the values of a set of in-
dependent variables (indVs) to the value of one nu-
merical dependent variable (depV) over an ordinary 
Euclidean space. In technical terms, a landscape is 
thus a function of multiple variables.

For a set of n indVs, such a function describes a 
hypersurface of dimension n (the same number of 
dimensions of the space of indVs) embedded in a 
multidimensional space of n + 1 dimensions. In the 
special case of just one indV (n = 1), the function can 
be represented as a one-dimensional curve in a two-
dimensional space (the Cartesian plane; Figure 7.1a). 
When n = 2, the function assumes the form of a two-
dimensional surface in an ordinary three-dimensional 
Cartesian coordinate system (Figure 7.1b).

The latter case provides the analogy with geo-
graphic landscapes. The two indVs are interpreted 
as geographic coordinates whose values specify a 
position in a two-dimensional space (e.g. the surface 
of an ideal globe), while the value of the depV rep-
resents the elevation with respect to the mean sea 
level. This analogy, by extension, gives reason for 
the use of the label ‘landscapes’ for these kinds of 
functions, irrespective of the number of indVs and 
of the actual possibility of visualizing the relation-
ship as a geographic landscape. Note that, although 
in mathematics a function can also be termed a map, 

Figure 7.1  Landscape functions in (a) two- and (b) three-dimensional space.
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states is proportional to the derivative of the func-
tion (in other words, proportional to its gradient), 
while the minima and maxima of the function are 
equilibrium states.

Dynamical systems whose expression is the gra-
dient of a potential function (actually, by conven-
tion, with opposite sign) are called gradient systems 
(Hirsch et al., 2004), but there are dynamical systems 
that do not have a potential function, as it is the case 
of most real physical systems, which are far from 
thermodynamic equilibrium. In other words, there 
are dynamical systems, often called non-equilibrium 
systems, which cannot be faithfully represented as 
landscapes, while in general any ordinary land-
scape can potentially be interpreted as a dynamical 
system. As we will see, the asymmetric relationship 
between landscapes and dynamical systems has 
profound implications for an understanding of the 
use of landscape visualizations for the modelling of 
developmental processes.

One can also note that the interpretation of a land-
scape as a dynamical system is generally coupled with 
a supplementary graphical contrivance. The land-
scapes which simply depict the relationship between 
a set of variables and that do not describe the time 
evolution of any system (e.g. a genotype–phenotype 
map), which we can call static, are depicted as ‘un-
inhabited lands’. On the contrary, the landscapes 
loaded with a dynamical system interpretation, 
which we can call dynamic, are depicted as ‘lands in-
habited by entities’ whose movements are governed 
by the shape of the landscape itself. In the classic ico-
nography, not only in biology, these are landscapes 
populated by rolling balls (e.g. in chemistry) or by 
swarms of climbing points (e.g. in evolutionary bi-
ology) which describe the temporal evolution of the 
modelled system. In addition, or as an alternative, 
the surface of the landscape is covered by arrows or 
stream symbols which show the time evolution of the 
system from different points in the space. ‘Dynamic 
landscapes’ are the kind of landscape put to work in 
the study of developmental processes.

Waddington’s landscapes

Undoubtedly, the most famous application of a 
landscape visualization in thinking about devel-
opment is Conrad Hal Waddington’s (1940, 1957) 

evolution rule makes it possible to derive from that 
state the past and future states of the system. The 
state of the system can be represented by a specif-
ic point position in an appropriate phase space (or 
state space), the axes of which represent the system 
variables. Dynamical systems customarily take the 
form of systems of differential equations or systems 
of finite difference equations, and at low dimen-
sionality (number of system variables ≤ 3), they are 
graphically portrayed as curves that show the time 
trajectories of the system in the phase space (phase 
portrait; Figure 7.3).

The key point for the discussion that will follow 
is that the equations defining a dynamical system 
describe a vector field which, under certain condi-
tions, can be seen as the gradient of an associated 
scalar field. In physics, such a scalar field is known 
as potential function (also scalar potential or potential 
surface), and a system governed by a potential func-
tion has the property that the rate of change of its 

Figure 7.2  A scalar field in two variables (the landscape surface) 
with the associated vector field that is its gradient. This is depicted as 
a projection on the bottom plane.
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(Franceschelli, 2009, 2011; Kauffman, 1987; Saun-
ders, 1989, 1993; Slack, 2002).

A picture of Waddington’s landscape, first de-
scribed in words (1939), appeared in Organisers 
and Genes (1940) in the form of a painting in the 
frontispiece of the book. In this book Waddington 
conceptually examined the embryological knowl-
edge of his time: grafting experiments and other 
manipulations had demonstrated that the ‘organ-
izer’, a specific region of the embryo, could deviate 
contiguous regions of the developing embryo to-
wards forming different tissues and organs. How-
ever, in order to be effectively influenced, those 
parts of the embryo had to be in a specific state of 
‘competence’ which gets progressively lost during 
development.

Relying on a solid tradition of visualization in 
embryology (Gilbert, 1991; Griesemer & Wimsatt, 
1989), Waddington first envisioned the develop-
ment of any ‘embryo part’ as a cascade bifurcation 
diagram, where, through a sequence of develop-
mental decisions, the part is driven from an un-
differentiated state towards one of its alternative 
possible fates, represented by the tips of the dia-
gram. In this view, the action of the organizer is 
more a sort of ‘evocation’ than an ‘induction’, the 
emphasis being on the potency and competence of 
the embryo part that only needs specific triggers at 
particular times.

‘epigenetic landscape’ (Figure 7.4a), which served 
as a pivotal concept in his attempt to conceive an 
explanatory framework encompassing the organi-
zational processes of development (‘epigenesis’, in 
contrast to ‘preformationism’, Maienschein, 2012) 
and the activity of genes (‘genetics’). Today, the 
term ‘epigenetic’ tends to be used with a different 
meaning with respect to that intended by Wadding-
ton, i.e. to indicate phenomena of heritable changes 
in gene expression that are not due to changes in 
DNA sequence (Eccleston et al., 2007). To avoid am-
biguities we will refer to ‘Waddington’s landscape’. 
As we will see, this label is further justified by the 
fact that in contemporary literature, in particular on 
cell differentiation, landscape visualizations are of-
ten accompanied by specific reference to Wadding-
ton’s work.

Waddington himself, in successive works (1939, 
1940, 1956, 1957), gave different interpretations 
of his landscape visualization (for careful histori-
cal reconstructions and philosophical scrutiny see 
Baedke, 2013; Caianiello, 2009; Fagan, 2012; Gilbert, 
1991, 2000; Peterson, 2010; Slack, 2002). Here we 
summarize the main issues of his concept, which 
are of particular relevance with reference to its 
current use in the context of a dynamical system 
approach to the study of development. Indeed, sev-
eral authors have seen in Waddington’s work a pio-
neer application of the dynamical systems theory 

Figure 7.3  Dynamical systems of (a) two and (b) three variables represented in their phase space. In (a), several of the system trajectories lead to 
the same limit periodic stable attractor, a limit cycle (Van der Pol oscillator, adapted from Wikimedia Commons). In (b), several system trajectories 
lead to the same stable point attractor.
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gene products, and what we today would call gene 
expression profiles, in their turn dependent on 
other molecules, were thought of as the proximal 
cause of developmental trajectories. The depend-
ence of gene product concentrations on ‘the dos-
age of the genes’ (allele dosage) represented a key 
passage in his attempt to relate genes and develop-
ment. By giving a pioneering image of development 
regulated by chemical interactions involving gene 
products, Waddington grasped the intuition of gene 
regulatory networks with a view strikingly similar 
to that in modern systems biology (Fagan, 2012).

Waddington’s landscape was described in more de-
tail in The Strategy of the Genes (1957), where its most 
famous graphical instances are found (Figure 7.4). In 
the image, which can be considered the ‘icon’ of the 
developmental process of differentiation (Figure 7.4a), 
the graphic represents a tilted moulded surface, down 
which a marble is going to roll. The rolling marble’s 
path corresponds to the development of some part of 
an organism from an early undifferentiated state to a 
mature differentiated state. The landscape topogra-
phy presents a system of diverging valleys that be-
come shallower and coalesce towards the top, while 
becoming deeper and fanning out towards the bottom 
of the slope. The bottom edge sees a series of depres-
sions representing alternative differentiated states of 
the system. The particular shape chosen for the slope 
also conveys other ideas about development. The 

Waddington’s landscape is clearly a reduction to 
three dimensions of this first intuition, through the 
transformation of a branching-track diagram into a 
system of bifurcating valleys. This transformation al-
lowed Waddington to animate the track graph with 
notions like equilibrium, disequilibrium, and distur-
bance. The familiar behaviour of water streaming by 
gravitation provided Waddington with the means 
of conjugating several ideas, namely that embryo’s 
parts (i) are in dynamic disequilibrium (like water 
running downstream) with a progressive loss of po-
tential, (ii) follow a developmental track which, as a 
whole, is more or less stable (‘the normal develop-
mental track is one towards which a developing sys-
tem tends to return after disturbance’ (Waddington, 
1940: 93)), and (iii) generally decrease their sensitiv-
ity to disturbances, from periods of high sensitivity 
where regulation is possible (‘a valley with gently 
sloping sides’) to periods of strong canalization (‘the 
valley as having vertical sides’). These concepts, 
with different degree of importance, survived in 
later developmental biology studies (Gilbert, 2000).

Looking for the ‘evocator’, i.e. the key causal fac-
tor within the organizer, Waddington argued for 
its chemical nature. He further argued for a chemi-
cal explanation of development in general, where 
concentrations of different chemicals are causally 
relevant to developmental pathways and decisions. 
In Waddington’s view, chemical compounds were 

Figure 7.4  Waddington’s (1957) depiction of his ‘epigenetic landscape’ (reprinted with permission). (a) The marble represents a biological 
system (e.g. a cell) at the verge of taking a developmental path toward one of a set of alterative more differentiated states represented by the 
three ending depressions at the base of the slope (Waddington, 1957: 29). (b) A vision from behind an epigenetic landscape. The shape of the 
slope is determined by tension of several interconnected guy-ropes (interacting gene products) that are attached to pegs stuck in the ground 
(genes) (Waddington, 1957: 36).
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projecting outward to the viewer represents time, 
the horizontal axis parallel to viewer represents the 
phenotype, and the vertical axis represents the ‘or-
der of development’.

In an effort to make the metaphor more expli-
cative, Waddington (1957) provided a view of the 
‘underside’ of the landscape, to show its supposed 
relationship to the genes (Figure 7.4b). The shape 
of the surface is determined by the pull of numer-
ous guy-ropes which are in their turn controlled 
by genes, represented as pegs fixed to the ground. 
Guy-ropes represent gene products, and their con-
nections represent their reciprocal interactions, 
which form a network that directly determines 
the shape of the landscape, i.e. of the dynamic of 
development.

Summing up, with his landscapes Waddington 
provided a simple mechanical analogy for the com-
plex biochemical and genetic dynamics that occur 
in organisms during development (Slack, 2002). 
The surface embedded in the state space of an or-
ganism’s molecular components is an effective rep-
resentation of a dynamical system, potentially able 
to describe the change in time of a developmental 
system at any level of biological organization, from 
the cell (or even from systems within a cell) to the 
whole organism.

Subsequent modelling in developmental biology, 
although not directly stemming from Waddington’s 
approach, nonetheless continues to put forward his 
graphical representations and to refer to his pioneer 
work.

Landscapes in current developmental 
biology

Current primary literature in developmental biol-
ogy makes use of a diversity of graphical visuali-
zations, depending on the specific subject (e.g. cell 
differentiation, pattern formation, gene expression) 
and the arena of the argumentation (e.g. experimen-
tal report, local dynamic modelization, theoretical 
generalization). Beyond their predictable occur-
rence in developmental biology textbooks, if only 
for historical reasons, Waddington’s landscapes can 
also be found in the current primary literature, in 
both experimental and theoretical developmental 
biology papers. They have been brought into play 

progressive reduction of the number of possible final 
differentiating states that occurs as the marble rolls 
downslope represents the progressive restriction of 
competence and potency of the system that accom-
panies differentiation. The progressive increase in 
the elevation of the crests that separate the different 
developmental pathways represents the process of 
canalization, the fact that the system becomes increas-
ingly buffered against development disturbances. The 
different developmental options available at the be-
ginning of the slope could be followed in response to 
evocating factors that are not represented in the land-
scape, like some environmental factors, producing a 
typical representation of the phenomenon of devel-
opmental plasticity. Although it is often assumed that 
the rolling marble represents a developing cell, in fact, 
and in Waddington’s view, it can represent any devel-
oping system under the effect of a number of relevant 
factors, such as gene products or inducing signals.

Waddington’s (1957) landscape is a genuine rep-
resentation of a developing system described in a 
space of state variables. For a differentiating cell, the 
height of the surface is proportional to some poten-
tial variable (‘developmental potential’) associated 
to each combination of the underlying descriptive 
variables (e.g. concentrations of different substances 
or gene products) in the cell. The tilt of the surface 
shows the spontaneous tendency for the system 
to change its state along one of the available path-
ways. Although in this graphical representation the 
surface is in some way external to the marble/cell, 
in the modelled system the slope is actually deter-
mined by the characteristics of the developing cell, 
while non-represented (hidden) variables that play 
the role of external perturbations or induction may 
be either inside or outside the developing cell.

Even when unanimously interpreted as the rep-
resentation of a dynamical system, the metaphor is 
still open to different understandings. For instance, 
for Slack (2002), the axes represent concentrations 
of all the substances, or all the gene products, in 
the cell, but because of the existence of inducing 
signals (not represented in the landscape), which 
can only influence a cell’s development while the 
cell is competent to respond (i.e. uphill), different 
cells/marbles will roll down different pathways to 
end up at different states of terminal differentia-
tion. Instead, for Fagan (2012), the horizontal axis 
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Quantitative aspects of the interactions and spatial 
organization of the interacting entities are gener-
ally not represented. Wiring diagrams provide a 
means to grasp the topology of the interactions, 
that is, the interdependence of system variables 
which are detailed in the equations, while avoid-
ing the possibility of getting lost in the complex 
expression of the latter. However, while the wiring 
diagram represents the system ‘machine’ behind 
a given developmental process, it does not make 
it possible to see how the system changes in time. 
Thus wiring diagrams are generally accompanied 
with a different representation of the same system, 
i.e. the phase portrait. Phase portraits are geomet-
ric representation of the trajectories of a dynamical 
system in its phase space (Figure 7.3). Each curve 
represents the time evolution of the system start-
ing from a different set of initial conditions (a dif-
ferent point in the phase space). The trajectories 
reveal the existence of system attractors, i.e. the sets 
of states towards which the systems tend to move 
over time. An attractor can be a point, a finite set 
of points, a curve, or even a complicated set with a 
fractal structure known as a strange attractor. The 
zone of the phase space where the system is driven 
towards the attractor is called its basin of attraction. 
Within the limits of the three-dimensional illustra-
tion (not easy to overcome on a paper sheet), phase 
portraits can represent a diverse bestiary of systems 
behaviours, which is wider than the set represent-
able with a landscape. First, in a three-dimensional 
phase portrait, three system variables can be repre-
sented, rather than two as in a three-dimensional 
landscape plot, in which the vertical axis is needed 
to represent the associate potential value of variable 
value combinations. Second, there are dynamical 
behaviours of the systems that cannot be faithfully 
accounted for by a landscape, such as limit cycles 
and chaotic behaviours (see ‘Landscapes and dy-
namical systems’).

Nonetheless, frequently phase portraits are fol-
lowed by a landscape representation, or by a hybrid 
visualization which mixes phase portrait and land-
scape together. To understand their precise role in 
the current literature, we will start from a few illus-
trative examples of recent studies on cell differentia-
tion. Actually, the use of Waddington’s landscapes is 
not exclusive to such area of study (see Baedke, 2013). 

in studies on pattern formation (Lepzelter & Wang, 
2008), cell signalling (Sekine et al., 2011), and pro-
grammed cell death (Zinovyev et al., 2013); howev-
er, they mainly tend to occur in cell differentiation 
studies, with a further focus on stem cell biology 
(see below). This is a direct consequence of the land-
scape model’s connection with dynamical systems.

Mathematical modelling in developmental biol-
ogy, in particular at the level of specific develop-
mental processes, like cell differentiation or pattern 
formation, is largely implemented through a dy-
namical system approach. Here developmental bi-
ology enters an intimate relationship with systems 
biology (see Jaeger and Sharpe, this volume), an 
emerging interdisciplinary approach to the study 
of biological systems which focuses on the com-
plex interactions among different components 
of the system. The system, in essence, is seen as a 
network of relations, with gene expression, meta-
bolic networks and cell signalling networks as well-
known examples. The formal representation of the 
system can take several alternative formalizations, 
from ordinary differential equations to directed 
graphs, Boolean networks, and Bayesian networks 
(Fagan, 2012; Klipp et al., 2009). All these different 
formalisms have a specific scope and range of ap-
plication. For instance, differential equations de-
fine continuous, deterministic models, while other 
kind of formalisms make it possible to cope with 
discrete deterministic models or with stochastic 
models. The different scope of these formalizations 
is not of particular relevance for the argument we 
are developing here, and we can limit ourselves to 
simply note that the use of differential equations is 
the most common formalization for dynamical sys-
tems in general and biology dynamical systems in 
particular.

In many papers the mathematical modelling of 
the dynamical system, typically as a system of equa-
tions, is accompanied by either or both of two kinds 
of graphical representations: wiring diagrams and 
phase portraits. Wiring diagrams are conventional 
pictorial representations of networks. Network 
nodes represent interacting entities (e.g. molecules 
or genes) while the connecting edges represent the 
interactions among the different nodes, generally 
with a simple symbolism to discriminate different 
kinds of relations (e.g. activation vs repression). 
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do not consider the landscape representation as an 
accessory metaphor, but they have to go beyond the 
original landscape concept in order to make it sig-
nificant in rigorous modelling. While they recognize 
that the idea of a potential function is particularly 
useful for equilibrium systems, where the potential 
is knowable a priori, non-equilibrium systems (in 
practice, most biological systems) cannot, in gen-
eral, be modelled as the gradient of a potential. The 
intuition of some potential, although widely used 
metaphorically, does not make it possible to move 
to a precise mathematical formalization. However, 
at the same time, standard dynamical system analy-
sis cannot account for the fact that developmental 
processes exhibit, at certain scales at least, a con-
sistent directionality in time. In their words, the 
‘“arrow of time” in the collective change of gene 
expression across multiple stable gene expression 
patterns (attractors) is not explained by the regulat-
ed activation, the suppression of individual genes 
which are bidirectional molecular processes, or by 
the standard dynamical models of the underlying 
gene circuit which only account for local stability of 
attractors’. Thus, to capture the global dynamics of 
this non-equilibrium system and gain insight in the 
time asymmetry of state transitions, they compute a 
‘quasi-potential landscape’ of the stochastic dynam-
ics of gene circuits that govern cell-fate commit-
ment. This is a function which combines a gradient 
potential with another force (‘curl flux’) that stem 
from the non-integrability of the system. In a fol-

However, since the aim of this contribution is not 
a meta-analysis of the current use of the landscape 
visualization but rather a close examination of the 
rationale behind its involvement in ‘development 
thinking’, limiting the selected examples to cell dif-
ferentiation does not affect our general argument.

In a review on stem cell dynamics, Enver et al. 
(2009) are explicit in that they make a ‘metaphori-
cal’ use of the landscape representation (Figure 7.5a).  
Using the traditional imagery of a marble rolling 
down a slope, they give the vertical dimension a 
thermodynamic interpretation as the free energy of 
the system in different states. However, in their opin-
ion the valleys of Waddington’s landscapes ‘missed 
the scope for relatively stable, if transitory, interme-
diate cell types observed during the differentiation’ 
(Enver et al., 2009: 388). The valleys (actually barely 
perceivable) of their landscape are thus punctuated 
by shallow depressions, representing as many inter-
mediate temporary stable states. Mathematically, all 
the depressions are seen as attractors, i.e. equilibrium 
states towards which the dynamical system tends to 
move. However, as is apparent from the trajectories 
of the system represented in the graph, although cer-
tain paths are more likely than others, the authors 
specify that for a cell ‘the possibility must also exist 
of moving in the reverse or alternative directions’ or 
that a cell can ‘move from one attractor to another by 
different routes’ (Enver et al., 2009: 389).

In a methodological study on mathematical mod-
elling of stem cell differentiation, Wang et al. (2010) 

Figure 7.5  A few examples of contemporary developmental landscapes (reprinted with permission): (a) from Enver et al. (2009); (b) from Wang 
et al. (2011); (c) from Furusawa and Kaneko (2012). In all cases, the behaviour of the developing systems does not faithfully follow what would be 
expected under a strict gravitational analogy (see text).
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model construction of cellular systems does not 
start from the definition of a potential function (the 
landscape), as is the case under certain condition 
for fitness landscapes (but see Rice, 2004).

Summing up, landscape visualizations are still 
present in the current literature, although they 
come in different ‘flavours’ and with a great dis-
parity in their interpretative load. This varies from 
allegoric pictures, like in the editorial commentary 
(Iovino & Cavalli, 2011) of an experimental work 
of Thomson et al. (2011) in the same journal issue, 
where landscapes are not even mentioned, to their 
full rehabilitation as models, conditional on their 
mathematical quantification, in the works of Wang 
et al. (2008, 2010, 2011).

Landscapes, between models and 
metaphors

Contemporary modelling research in developmental 
biology, in particular on cell differentiation, makes 
frequent reference to Waddington’s landscape. On 
the one hand, historical continuity is emphasized. On 
the other hand, this is supplemented by a statement 
of progress with respect to Waddington’s ideas, and 
many authors identify such progress with the move 
from a ‘mere metaphor’ to a more sound conception. 
For Ferrell (2012), ‘Waddington’s landscape [. . .] is 
more than just a metaphor’, but at the same time he 
argues that the classical shape of its surface, with di-
verging valleys, is correctly illustrative of some de-
velopmental processes but not others, like cell-fate 
induction, for which he proposes an alternative gen-
eral shape. Furusawa and Kaneko (2012) claim that 
today to ‘characterize the attractors of stem and dif-
ferentiated cells quantitatively’ we need not just fur-
ther experiments but also ‘theoretical formulations 
that go beyond Waddington’s epigenetic landscape’. 
For Wang et al. (2011), ‘The Waddington landscape 
is no longer a metaphor. It is physical and quantifi-
able by the underlying probability landscape.’ And 
Huang (2012) emphasizes that the ‘quasi-potential 
landscape with attractors’ is ‘a mathematical entity 
that has a molecular basis and is not a mere meta-
phor’. It seems that the qualification of a landscape 
as either a metaphor or a mathematical model is a 
crucial passage for any evaluation of the use of land-
scapes in developmental biology.

lowing paper from the same research group (Wang 
et al., 2011), underlining the fact that due to the qual-
itative nature of Waddington’s landscape it is not 
very clear how to connect it to the results of experi-
mental work, the authors suggest a formalization 
which aims at ‘quantifying’ Waddington’s land-
scape. Focusing on cell differentiation, they use the 
analytical tool based on the combination of a gradi-
ent with a curl force devised in their previous works 
(Wang et al., 2008, 2010) to construct a ‘quantified 
Waddington landscape’ (Figure 7.5b). However, 
despite superficial similarity, a number of differ-
ences between the new landscape and the original 
Waddington’s landscape must be pointed out: (i) in 
the quantified landscape the temporal stabilization 
of the uncommitted stem cell state is permitted; (ii) 
cell-fate decision does not necessarily happen at the 
hilltop, as developmental paths can start bifurcat-
ing even when the system is in a basin of attraction; 
(iii) ‘developmental paths clearly do not follow 
gradient paths that the gravity driven metaphor of 
Waddingon would predict’, as the curl force makes 
the developmental path deviate from the steepest 
descending gradient path; and (iv) while in Wad-
dington’s landscape the possible reverse path is 
supposed to be the same as the forward path, in this 
quantified landscapes ‘the developmental paths are 
clearly distinct from the retrodifferentiation paths’.

In a dynamical systems perspective on stem cell 
biology, Furusawa and Kaneko (2012) argue that 
some core property of ‘stemness’, like differentiation 
from a stable state, ‘cannot easily be described by 
Waddington’s landscape’. Through a dynamical 
systems approach, they describe a model in which 
fluctuating and oscillatory gene expression, ‘the es-
sence of stemness’, are accounted for. To explain the 
difference between the traditional view of cell differ-
entiation and the one suggested in their work, they 
make use of a landscape visualization (Figure 7.5c).  
On these landscapes, however, the streams of vec-
tors indicating the direction of the system in each 
state are not always in conformity with the curva-
ture of the landscape, as one would expect if these 
were to be intended as its gradient field.

As noted by Fagan (2012) and exemplified by the 
case studies above, landscape visualization does 
not represent a predictive tool, but rather a visual 
aid for the derivations of the model. In other words, 
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unrelated real systems. A model M can thus be de-
fined as a representation of the system S that can be 
worked upon with significant autonomy from S and 
can be usefully employed for answering questions 
on S and, with every probability, also on a wider set 
of systems Si. The set Si, the representational scope 
of model M, can change as science progresses. In 
contrast, the distinctive mark of a metaphor is not 
that it conveys a very limited set of aspects of the 
represented system (although, of course, it does), 
but rather that it cannot be investigated, deepened, 
and modified independently to accrue knowledge. 
It can be further amended and/or complemented 
only as the empirical or theoretical understanding 
of S progresses. The constitutional subordination 
of metaphors with respect to the system they rep-
resent is not in contrast with the positive heuristic 
function emphasized by some theorists. Indeed, 
summarizing, stimulating, and guiding research 
upon target systems, as opposed to upon them-
selves, is all metaphors can do. Constitutional sub-
ordination further implies that internal consistency 
is neither a requirement nor an assumption of meta-
phors. Models, unlike metaphors, need some kind 
of internal consistency that is at the basis of their 
constitutional autonomy.

The degree of autonomy criterion is a suitable 
framework for addressing the problem of land-
scapes in development. However, it produces a con-
tinuum of representations, from the most rigorous 
of formal models to the most allegoric of metaphors, 
rather than providing a clear boundary between the 
two categories (see Kaplan, 2008 for an opposite 
view). Both models and metaphors are representa-
tions of real systems, both emphasize some feature 
of the real world while deliberately neglecting oth-
ers, both are good for specific purposes only, and 
both are potentially misleading in that accepting a 
specific representation necessarily influences and 
defines the questions that are considered to be im-
portant (Gavrilets, 2004, 2010).

Further insights on the model/metaphor rela-
tionship can be gained by looking into the parallel 
histories of the two major landscape metaphors in 
biology. At the beginning of the chapter, we men-
tioned fitness landscapes in evolutionary biology, 
their success, and the debates that surrounded them 
in recent years. Historical reconstructions of Wad-

In everyday discourse, as well as in some philos-
ophy of science studies, the most natural counter-
part of metaphors are models: there is an intuitive 
difference between representations that are ‘only 
metaphors’ and others that are ‘models in their own 
right’. However, there is little consensus on any di-
agnostic feature to distinguish between the two. 
Mathematization has been proposed as a distinctive 
feature of models (Lewontin, 1963), but scientific 
models come in many kinds, including visual and 
material objects (Downes, 1992), and even organ-
isms (Ankeny & Leonelli, 2011). A narrow selection 
of represented aspects of the world and the lack of 
testability were proposed as distinctive marks of 
metaphors (Kirchner, 1990), but extreme simplifica-
tion can be found in mathematical models too (Le-
wontin, 1963), and the application of such models 
to the world can always be seen as a metaphorical 
re-description (Hesse, 1966). A famous analysis by 
Levins (1966) emphasized that model building re-
quires making certain trade-offs between realism, 
precision, and generality. Levins’ scheme can be 
used to accommodate several kinds of representa-
tion as models without the need of setting meta-
phors apart (Calcott, 2008 vs Pigliucci & Kaplan, 
2006 on adaptive landscapes).

In the case of developmental landscapes, we 
think that the most suitable framework to set the 
model/metaphor contrast is one based on a crite-
rion technically known as autonomy. Morgan and 
Morrison (1999) emphasize the autonomy of models 
with respect to both theory and observational data. 
Models are seen as ‘mediators’, and their autonomy 
consists in the possibility of performing intensive 
research on the model itself, elevated to a ‘stable tar-
get of explanation’ (Keller, 2002: 115). For instance, 
mathematical analysis of models built through a 
dynamical systems approach (see ‘Landscapes in 
current developmental biology’) has brought about 
discoveries about dynamical systems themselves, 
quite independently from the original questions to 
which they were applied. The produced knowledge 
can be brought back, at different times, to the ‘repre-
sentational target’ that had inspired the model but 
also to a changing ‘representational scope’ that can 
be much wider than the original target (Ankeny & 
Leonelli, 2011), as exemplified by the fact that the 
same mathematical model can apply to completely 
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complex mathematical model, which, however, can-
not capture the properties of real multidimensional 
landscapes, as shown by more recent theoretical 
work (Gavrilets, 2004, 2010). Waddington, instead, 
originally had no mathematical models to select 
from, and the messages entrusted to the metaphor 
were directly derived from empirical observations of 
competence, evocation, equilibrium, disequilibrium, 
disturbance, discrete end-states, and the like in de-
veloping tissues of embryos of different species.

In the studies examined in this chapter, devel-
opmental landscapes, despite being potentially 
misleading, nonetheless correctly orientate the at-
tention of the reader towards specific messages cho-
sen by the researcher. Landscape visualizations are 
metaphorical in that they are not autonomous ob-
jects of research and inference, and they show a lim-
ited selection of features of the developing systems, 
although at the same time they are the best visual 
approximation for the equations that describe them.

Landscapes and ‘vision’

Our perusal of recent literature, although far from 
being exhaustive, has shown that Waddington’s 
landscape is ‘alive and well in contemporary de-
velopmental biology’ (Gilbert, 2000: 734). However, 
contemporary developmental landscapes differ 
profoundly from the original representations. It is a 
semantic question to ask if these ‘new landscapes’ 
are still ‘Waddington’s landscapes’, but asking how 
much of a landscape there is in them is not. On these 
strange landscapes, or ‘quasi-landscapes’, one is not 
authorized to see a marble rolling down the slope. 
Strange things can happen on such surfaces: marbles 
emerging from a pit, taking a path different from 
the one with maximum slope, going uphill, moving 
from one place just to be back some time later. In 
addition, the landscape surface is only a part of the 
graphical representation of a dynamics. This needs 
to be complemented with vector arrows or stream 
signs that can even be at odds with the shape of the 
landscape on which they sit. On this landscape one 
has to relax the natural spontaneous gravitational 
interpretation of the represented dynamics, but at 
the same time it is exactly the fact that everybody 
has a personal experience of the gravitational force 
that makes this representation so eloquent.

dington’s work (Caianiello, 2009; Gilbert, 1991) 
demonstrated that Waddington’s landscape was 
inspired by Wright’s work (1932) through Joseph 
Needham (1936). Such connection was motivated 
by Waddington’s search for relating development 
to genetics (Gilbert, 1991).

Beyond historical links between landscapes in 
development and evolution, we highlight here a cu-
rious form of antisymmetry between the history of 
the two ideas since their respective introduction in 
scientific literature. Evolutionary landscapes were 
introduced by a mathematician, Wright, as a picto-
rial representation of a mathematical model. Then, 
generations of students of evolution, working in 
totally different fields, from genetics to palaeontol-
ogy (Dobzhansky, 1937; Simpson, 1944), adopted 
the figure as a basis for their non-mathematical 
theorizations. Some commentators describe the em-
ployment therein as a useful heuristic (Ruse, 1996; 
Skipper, 2004; Skipper & Dietrich, 2012). In con-
trast, developmental landscapes were introduced 
by an experimental embryologist as a depiction of 
his empirical observations to serve as a conceptual 
tool. The figure was then taken up by biologists 
and biophysicists with more mathematical skills as 
a complement to their formal models and simula-
tions about specific developmental processes. Both 
Wright and Waddington were partly responsible for 
the later uses of their respective intuitions. Wright 
(1988) approved the usage in contexts as different 
from the native context as palaeontology and was 
charged with levity for that (Pigliucci, 2008). Wad-
dington (1957) himself moved to systems theory 
and presented his landscape in a completely differ-
ent context with respect to his previous work (1940). 
At that time, powerful mathematical and theoreti-
cal tools were already available (although without 
the computational power we have today), but the 
empirical knowledge, e.g. on genes and their role 
in development, was by far insufficient for model 
construction in development.

Interestingly, the two landscape metaphors are 
opposites in terms of what concerns their native 
context. Wright’s model was a logico-mathematical 
system of Mendelian populations, with huge dimen-
sionality that was reduced to a three-dimensional 
representation (Serrelli, 2011). The landscape 
metaphor here is thus a partial representation of a 
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represented by the axis of the space, while their in-
sertion points have no physical value; and they are 
supposed to exert forces that are not represented in 
the space. Thus Waddington’s attempt to convey 
more explicit reference to the generative forces (or 
relevant factors) for the particular shape of the land-
scape results in a less accurate representation.

One can search the reasons behind the persis-
tency of the landscape metaphor in the scientific 
literature. It appears that the idea of a landscape is 
floated every time there is the need to talk about 
a map, an association between quantities, irrespec-
tive of the mathematics one can develop on it or the 
actual possibility of giving precise physical mean-
ing to the axes of the space. Reasons for that can 
possibly be found in the architecture of our cogni-
tion system, or in our difficulty in giving up the 
tradition of a cherished metaphor. We refrain from 
pushing these speculations further, and suggest in-
stead a parallel with a historic controversy, partially 
still ongoing within mathematics. This is about the 
role of geometric vision in mathematics.

The French school known by the collective name 
of Nicolas Bourbaki was the leading group of math-
ematicians who aimed at a complete algebraization 
of geometry and analysis through the construction 
of extremely abstract theories, in which the possibil-
ity of ‘visualizing’ mathematical objects is consid-
ered to be unnecessary. In contrast, other schools of 
thought remained more closely linked to an intuitive 
and geometric vision of mathematics. For example, 
Vladimir Arnol’d (1998), the author of fundamental 
works on differential equations and dynamical sys-
tems, argued that geometry algebraization, inflated 
axiomatization and abstraction as an end in itself, 
leads mathematics to nowhere. In his opinion, the 
geometric and physical vision of mathematics has 
a constructive role in the process of mathematical 
discovery. This is not only a question of method, as 
there are fundamental mathematical theorems, as 
for instance the classification theorem for surfaces, 
which are an achievement of both mathematics and 
physics together. This discussion was central for 
most of the last century; however, today the need 
for a geometric vision of problems, before, during, 
and after their algebraic differential development, 
goes beyond all these contrasting arguments. The 
centenarian development of differential geometry 

This is a little-appreciated, misleading trait of 
landscape representations in general, not only in vis-
ualizations of development. The landscape represen-
tation deceptively suggests that the phenomenon/
system could be described in terms of a potential 
function that is maximized/minimized at equilib-
rium; however, this function does not always exist 
(Rice, 2004). Another, mostly neglected and poten-
tially misleading trait is that, even if a landscape 
faithfully represents the directions of change of the 
system from any state, the kinematics of a rolling 
marble does not necessarily apply. For instance, while 
a marble in a gravitational setting would increase its 
speed rolling down a constant slope, the marble of 
Waddington’s landscapes would roll down the same 
trajectory at a constant speed. At a local minimum 
of the landscape, a gravitational marble would stop 
accelerating, whereas Waddington’s marble would 
stop moving (Ferrell, 2012).

Nevertheless, landscape graphical representa-
tions are able to convey information not immedi-
ately apparent in a phase portrait. For instance, 
they can effectively express the directionality of the 
process at large scale, the degree of stability of lo-
cal equilibria, and the fact that certain trajectories 
are more probable than others. Some dynamical 
systems can still be represented as landscapes, for 
instance stipulating that a ‘stable state’ is not neces-
sarily exactly a point, but can also be a periodic or 
aperiodic oscillation within a comparatively small 
region of their phase space.

In general, a landscape cannot be a faithful rep-
resentation of a real system. This is especially true 
of open systems (i.e. systems open to matter and/
or energy flow), such as a developing organism or a 
part of it. But this is not new, as Waddington himself 
described with words dynamics and interactions 
which could have never been portrayed on his land-
scape. Indeed, to stress his view on the role of genes 
in development, Waddington (1957) produced a 
second graph (Figure 7.4b). However, whereas 
in the most famous graph (Figure 7.4a) the figure 
can still be ideally translated into a formal model, 
providing specific identity to the three axes, in this 
second graph this possibility is lost. The ropes trav-
erse the space inserting at the base of the space (why 
there?) and under the surface. Actually, the ropes 
(genes products, cell metabolites) should already be 
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quires a theoretical edifice with strong explanatory 
power for a very large set of natural phenomena as 
well as high predictive performances to the level of 
very detailed observations and measures. In com-
mon understanding, a general model of a natural 
phenomenon does not as such qualify as a theory of 
that phenomenon.

As a matter of fact, independently from the epis-
temological evaluation on what Waddington was 
historically aiming at, landscapes have proven to be 
effective visualization tools for investigating only 
specific developmental processes, without allowing 
straightforward formalization into mathematical 
models. Overall, landscapes seem to be too limited 
a form of abstraction to stand as a pivotal metaphor 
in the search for a comprehensive theory of devel-
opment. However, only future research will be able 
to assess whether the landscape metaphor can ef-
fectively extend its scope to other developmental 
processes or have any role in a conceptualization of 
development as a whole.
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