RESOURCE

Molecular Ecology Resources (2011) 11, 586-589

PERMANENT GENETIC RESOURCES NOTE

Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2010–31 January 2011

MOLECULAR ECOLOGY RESOURCES PRIMER DEVELOPMENT CONSORTIUM,¹ KIYOKAZU AGATA,² SAMER ALASAAD, ^{3,4} VERA MARIA FONSECA ALMEIDA-VAL,⁵ J. A. ÁLVAREZ-DIOS,⁶ F. BARBISAN,⁷ JON S. BEADELL,⁸ J. F. BELTRÁN,⁹ M. BENÍTEZ,¹⁰ G. BINO,⁷ COLIN BLEAY,¹¹ P. BLOOR,¹² JÖRG BOHLMANN,¹³ WARREN BOOTH,¹⁴ E. BOSCARI,⁷ ADALGISA CACCONE,⁸ TATIANA CAMPOS,¹⁵ B. M. CARVALHO,^{16,17} GISELE TORRES CLIMACO,⁵ JEAN CLOBERT,¹¹ L. CONGIU,⁷ CHRISTINA COWGER,¹⁸ G. DIAS,^{16,17} I. DOADRIO,¹⁹ IZENI PIRES FARIAS,²⁰ N. FERRAND,^{16,17} PATRÍCIA D. FREITAS,²¹ G. FUSCO,⁷ PEDRO M. GALETTI,²¹ CRISTIAN GALLARDO-ESCÁRATE,²² MICHAEL W. GAUNT,²³ ZANELI GOMEZ OCAMPO,⁸ H. GONÇALVES,¹⁶ E. G. GONZALEZ,²⁴ PILAR HAYE,²⁵ O. HONNAY,²⁶ CHAZ HYSENI,⁸ H. JACQUEMYN,²⁶ MICHAEL J. JOWERS,³ AKIHIRO KAKEZAWA,² ERI KAWAGUCHI,² CHRISTOPHER I. KEELING,¹³ YE-SEUL KWAN,²⁷ MICHELANGELO LA SPINA,²⁸ WAN-OK LEE,²⁹ M. LEŚNIEWSKA,³⁰ YANG LI,^{31,32} HAIXIA LIU,³¹ XIAOLIN LIU,³¹ S. LOPES,¹⁶ P. MARTÍNEZ,³³ S. MEEUS,²⁶ BRENT W. MURRAY,³⁴ ALINE G. NUNES,²¹ LOYCE M. OKEDI,³⁵ JOHNSON O. OUMA,³⁶ B. G. PARDO,³³ RYAN PARKS,¹⁸ MARIA NAZARÉ PAULA-SILVA,⁵ C. PEDRAZA-LARA,¹⁹ OMATHTHAGE P. PERERA,³⁷ A. PINO-QUERIDO,³³ MURIELLE RICHARD,³⁸ BRUNO C. ROSSINI,²¹ N. GAYATHRI SAMARASEKERA,³⁴ ANTONIO SÁNCHEZ,⁴ JUAN A. SANCHEZ,²⁸ CARLOS HENRIQUE DOS ANJOS SANTOS,⁵ WATARU SHINOHARA,² RAMÓN C. SORIGUER,³ ADNA CRISTINA BARBOSA SOUSA,¹⁵ CAROLINA FERNANDES DA SILVA SOUSA,⁵ VIRGINIE M. STEVENS,³⁹ M. TEJEDO,⁴⁰ MYRIAM VALENZUELA-BUSTAMANTE,²² M. S. VAN DE VLIET,⁴¹ K. VANDEPITTE,²⁶ M. VERA,³³ PETER WANDELER,⁴² WEIMIN WANG,³² YONG-JIN WON,²⁷ A. YAMASHIRO,⁴³ T. YAMASHIRO⁴⁴ and CHANGCHENG ZHU⁴⁵

¹Molecular Ecology Resources Editorial Office, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada, ²Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan, ³Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio s/n, 41092 Seville, Spain, ⁴Departamento de Biología Experimental, Universidad de Jaén, Campus Las Lagunillas, s/n, E-23071 Jaén, Spain, ⁵Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, AM, CEP 69060-001, Brazil, ⁶Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain, ⁷Department of Biology, University of Padova, via Ugo Bassi 58/B, I-35121 Padova, Italy, ⁸Department of Ecology and Evolutionary Biology, Yale University, 21 Sachem Street, New Haven, CT 06511, USA, ⁹Departamento de Fisiología y Zoología, Universidad de Sevilla, Avda. Reina Mercedes, 6, 41012 Sevilla, Spain, ¹⁰Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva s/n, 18071 Granada, Spain, ¹¹CNRS USR 2936, Station d'Ecologie Expérimentale du CNRS à Moulis, 09200 Moulis, France, ¹²Grupo de Biodiversidad y Recursos Genéticos, Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia, ¹³Michael Smith Laboratories, University of British Columbia, 321-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada, ¹⁴Department of Entomology and W.M. Keck Centre for Behavioral Biology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA, ¹⁵210 Universidade Estadual de Campinas (UNICAMP), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Campinas, SP, CP 6109, CEP 13083-970, Brazil, ¹⁶CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal, ¹⁷Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal, ¹⁸USDA-ARS, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA, ¹⁹Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain, ²⁰Universidade Federal do Amazonas (UFAM), Laboratório de Evolução e Genética Animal Manaus, AM, CEP 69077-000, Brazil, ²¹Departamento de Genética e Evolucão, Universidade Federal de São Carlos, Via Washington Luiz, Km 235, PO Box 676, CEP 13565-905, São Carlos, SP, Brazil, ²²Laboratorio de Genética y Biotecnología Acuícola, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile, ²³Infectious and Tropical Diseases Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK, ²⁴Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid (UCM), Facultad de Veterinaria, 28040 Madrid, Spain, ²⁵Laboratorio de Diversidad

Correspondence: Molecular Ecology Resources Primer Development Consortium, E-mail: editorial.office@molecol.com

Molecular, Departamento de Biología Marina, Universidad de Católica del Norte, Coquimbo, Chile, ²⁶Laboratory of Plant Ecology, University of Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium, ²⁷Division of EcoScience, Ewha Womans University, Science B Building (rm 554), 11-1 Daehyon-Dong, Sodaemun-Ku, Seoul, 120-750, Korea, ²⁸Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor, 1, La Alberca, 30150 Murcia, Spain, ²⁹Inland Fisheries Research Institute, National Fisheries Research & Development Institute, Gapyeong, Gyeonggi-do, 444-815, Korea, ³⁰Department of General Zoology, A. Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland, ³¹College of Animal Science and Technology, Northwest A & F University, 712100 Yangling, Shanxi, China, ³²College of Fisheries, Huazhong Agricultural University, 430070 Wuhan, Hubei, China, ³³Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain, ³⁴Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada, ³⁵National Livestock Resources Research Institute, P.O. Box 96, Tororo, Uganda, ³⁶Trypanosomiasis Research Centre, Kenya Agricultural Research Institute, P.O. Box 362-00902, Kikuyu, Kenya, ³⁷Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA, ³⁸CNRS UMR 7625, Université Pierre et Marie Curie, Case 237, 7 Quai St Bernard, 75005 Paris, France, ³⁹FRS-FNRS, University of Liège, 22 Quai VanBeneden, 4020 Liège, Belgium, ⁴⁰Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio, s/n, 41092 Sevilla, Spain, ⁴¹CCMAR, FCMA, Universidade do Algarve, Gambelas, 8005-139 Faro, Portugal, ⁴²Institute of Evolutionary Biology and Environmental Studies (IEU), University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland, ⁴³Graduate School Advanced Technology and Science, The University of Tokushima, 2-1 Minami-josanjima, Tokushima 770-8506, Japan, ⁴⁴Environmental Symbiosis Studies, Graduate School of Integrated Arts and Sciences, The University of Tokushima, 1-1 Minami-josanjima, Tokushima 770-8502, Japan, ⁴⁵Department of Biology, Kim II-sung University, Taesong District, Pyongyang, Korea

Abstract

This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp. tritici, Cobitis lutheri, Dendroctonus ponderosae, Glossina morsitans morsitans, Haplophilus subterraneus, Kirengeshoma palmata, Lysimachia japonica, Macrolophus pygmaeus, Microtus cabrerae, Mytilus galloprovincialis, Pallisentis (Neosentis) celatus, Pulmonaria officinalis, Salminus franciscanus, Thais chocolata and Zootoca vivipara. These loci were cross-tested on the following species: Acanthina monodon, Alytes cisternasii, Alytes maurus, Alytes muletensis, Alytes obstetricans almogavarii, Alytes obstetricans boscai, Alytes obstetricans obstetricans, Alytes obstetricans pertinax, Cambarellus montezumae, Cambarellus zempoalensis, Chorus giganteus, Cobitis tetralineata, Glossina fuscipes fuscipes, Glossina pallidipes, Lysimachia japonica var. japonica, Lysimachia japonica var. minutissima, Orconectes virilis, Pacifastacus leniusculus, Procambarus clarkii, Salminus brasiliensis and Salminus hilarii.

This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Table 1 contains information on the focal species, the number of loci developed, any other species the loci were tested in and the accession numbers for the loci in both the Molecular Ecology Resources Database and GenBank. The authors responsible for each set of loci are listed in the final column. A full description of the development protocol for the loci presented here can be found on the Molecular Ecology Resources Database (http:// tomato.biol.trinity.edu/).

Table 1 Information on the focal species, the number of loci developed, any other species the loci were tested in and the accession numbers for the loci in both the Molecular Ecology Resources Database and GenBank. The authors responsible for each set of loci are listed in the final column

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors
Alytes dickhilleni	13	A. obstetricans pertinax, A. obstetricans obstetricans, A. obstetricans boscai, A. obstetricans almogavarii, A. muletensis, A. maurus, A. misternasii	45209-45221	HQ693828-HQ693840	Carvalho, B. M.; Lopes, S.; Van de Vliet, M. S.; Dias, G.; Benítez, M.; Beltrán, J. F.; Tejedo, M.; Ferrand, N.; Gonçalves, H.

588 PERMANENT GENETIC RESOURCES NOTE

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors	
Arapaima gigas	10	n/a	45253-45262	HM013750-HM013759	Santos, Carlos Henrique dos Anjos; Climaco, Gisele Torres; Sousa, Carolina Fernandes da Silva; Paula-Silva, Maria Nazaré; Sousa, Adna Cristina Barbosa; Farias, Izeni Pires; Campos, Tatiana; Almeida-Val, Vera Maria Fonseca	
Austropotamobius italicus	12	Pacifastacus leniusculus, Cambarellus zempoalensis, C. montezumae, Orconectes virilis, Procambarus clarkii	45393–45404	HQ593123-HQ593134	Pedraza-Lara, C.; Gonzalez, E. G.; Bloor, P.; Doadrio, I.	
Blumeria graminis f. sp. tritici	9	n⁄a	45222, 45223, 45225–45231 (see also 45224)	HQ631364, HQ631366-HQ631373	Parks, Ryan; Booth, Warren; Cowger, Christina	
Cobitis lutheri	11	C. tetralineata	45281–45291	HQ158597-HQ158607	Kwan, Ye-Seul; Lee, Wan-Ok: Won, Yong-Jin	
Dendroctonus ponderosae	50	n/a	45343-45392	GO486077, GT317345, GT320845, GT322895, GT324623, GT324841, GT325939, GT328703, GT331212, GT339861, GT344705, GT345241, GT350467, GT350767, GT356832, GT357891, GT363660, GT369500, GT373329, GT381367, GT383057, GT393905, GT401041, GT403944, GT404280, GT408450, GT413070, GT413201, GT415941, GT416554, GT419741, GT421807, GT429515, GT430043, GT433817, GT436798, GT451465, GT457678, GT458184, GT461671, GT458184, GT461671, GT458184, GT461671, GT458184, GT4615588, GT473994, GT474165, GT485805, GT486724, GT490498, GT490735, GT491361	Samarasekera, N Gayathri; Keeling, Christopher I.; Bohlmann, Jörg; Murray, Brent W.	
Glossina morsitans morsitans	14	G. fuscipes fuscipes, G. pallidipes	45232–45252	See paper for details	Hyseni, Chaz; Beadell, Jon S.; Gomez Ocampo, Zaneli; Ouma, Johnson O.; Okedi, Loyce M.; Gaunt, Michael W.; Caccone, Adalgisa	
Haplophilus subterraneus	11	n/a	45198–45208	HQ670723-HQ670733	Congiu, L.; Boscari, E.; Bino, G.; Barbisan, F.; Leśniewska, M.; Fusco, G.	

Table 1 Continued

PERMANENT GENETIC RESOURCES NOTE 589

Species	No. primers developed	Other species tested	MER database no.	GenBank accession no.	Authors	
Kirengeshoma palmata	engeshoma 8 n/a 45176- mata		45176-45183	AB571675–AB571678, AB571681, AB571682, AB598398, AB598399	Yamashiro, T.; Yamashiro, A.	
Lysimachia japonica	10	L. japonica var. japonica, L. japonica var. minutissima	45162, 45163, 45331–45342	AB591815–AB591824	Shinohara, Wataru; Kakezawa, Akihiro; Kawaguchi, Eri; Agata, Kiyokazu	
Macrolophus pygmaeus	10	n/a	45264–45273	HM208591–HM208599, HQ853699	Sanchez, Juan A.; La Spina, Michelangelo; Perera, Omaththage P.	
Microtus cabrerae	12	n/a	45292–45303	AF268902, AF268903, EF666983, EF666984, EF666987, EF666990, EF666991, EU101013, EU101014, EU101016, EU101021, FR820649	Alasaad, Samer; Soriguer, Ramón C.; Wandeler, Peter; Jowers, Michael J.; Sánchez, Antonio	
Mytilus galloprovincialis	15	n/a	45132–45146	AJ625605, AJ626093, AJ624322, AJ938131, AJ938131, EH663192, EH663098, EH663076, EH662757, FL498494.1, FL500528.1, FL498564.1, FL495095.1, FL501296.1, BV725482	Pardo, B.G.; Vera, M.; Pino-Querido, A.; Álvarez-Dios, J.A.; Martínez, P.	
Pallisentis (Neosentis) celatus	11	n/a	45324–45336	HQ588802-HQ588812	Li, Yang: Liu, Xiaolin: Liu, Haixia; Wang, Weimin; Zhu, Changcheng	
Pulmonaria officinalis	8	n/a	45304–45311	HQ452963-HQ452970	Meeus, S.; Honnay, O.; Vandepitte, K.; Jacquemyn, H.	
Salminus franciscanus	10	S. brasiliensis, S. hilarii	45184–45197 (includes monomorphic loci)	HQ317313–HQ137316, HQ137320–HQ137326	Rossini, Bruno C.; Nunes, Aline G.; Freitas, Patrícia D.; Galetti Jr, Pedro M.	
Thais chocolata	12	Acanthina monodon, Chorus giganteus	45312-45323	HQ700360-HQ700371	Gallardo-Escárate, CristianValenzuela- Bustamante, Myriam; Have Pilar	
Zootoca vivipara	12	n/a	45164–45175	HQ337631-HQ337642	Stevens, Virginie M.; Richard, Murielle; Bleay, Colin; Clobert, Jean	

Table 1 Continued

Molecular Ecology Resources Database

online Original manuscript

1 Microsatellite isolation in a population of the geophilomorph centipede Haplophilus subterraneus 2 with high frequency of morphological anomalies 3 Congiu L.*¹, Boscari E.², Bino G.³, Barbisan F.⁴, Leśniewska M.⁵, Fusco G.⁶ 4 5 1, 2, 3, 4, 6 Department of Biology, University of Padova, Italy 6 ⁵ Department of General Zoology, A. Mickiewicz University, Poznań, Poland 7 8 *leonardo.congiu@unipd.it 9 10 11 12 13 14 Abstract 15 This study reports the first isolation and characterization of microsatellites from the major arthropod 16 clade Chilopoda. The species of interest is the geophilomorph centipede Haplophilus subterraneus, 17 for which a high incidence of morphological anomalies has been recorded in several European 18 populations. With the aim of investigating the causes of malformations in the context of the 19 phylogeographic history of the species, we set up a panel of microsatellites to be used in population 20 genetics studies. 21 22 Main text 23 An exotic population of the geophilomorph centipede Haplophilus subterraneus (also cited as 24 Stigmatogaster subterranea), living in a city park of Poznań (West Poland), exhibits a high 25 proportion (26%) of individuals with morphological anomalies of several kinds. The study of these 26 anomalies, in particular those affecting trunk segmentation, provided precious information about 27 normal developmental dynamics in these animals during late embryogenesis, with implications for 28 the process of segmentation in arthropods at large (Leśniewska et al. 2009a). 29 However, the causes of the anomalies are still to be identified. The high incidence and the 30 extreme diversity of the morphological defects would suggest the presence of some environmental 31 physico-chemical factors responsible for the recorded high level of developmental instability. 32 However, further observations allowed to exclude this hypothesis: (a) physico-chemical parameters 33 of the soil, including heavy metal content and radioactivity, are within standard values; (b) no 34 comparable frequency of morphological anomalies of any kind was found in any of the other nine 35 species of centipedes living in the same site, including other four geophilomorph species; (c) 36 preliminary data show that segmental anomalies of the same kind occur with comparable high 37 frequency also in other European populations of *H. subterraneus*, both within and outside its natural 38 range (Leśniewska et al. 2009b).

Specifically targeted investigations are thus necessary to identify the causes of the high level of

39

40 developmental instability in the populations of this species. With this aim, we have planned a study 41 for evaluating the genetic structure of the European populations of *H. subterraneus* in its relation to 42 the incidence of anomalies, and for reconstructing the phylogeography of the same population, as a 43 basis for the comparative analysis of developmental instability. 44 The absence of microsatellite markers for the species made necessary the isolation here reported, 45 which also represent the first microsatellite isolation of the whole clade Chilopoda. 46 47 Genomic DNA was extracted from 4-5 trunk segments using a salting-out protocol (Patwary et al. 48 1994). As for sample conservation, only animals stored in 100% ethanol immediately after 49 collection yielded DNA of acceptable quality. Lower concentrations of ethanol resulted in highly 50 degraded DNA. 51 A partial genomic library was constructed after enrichment with a pool of biotin-labelled probes 52 ((AC)₁₇ (AG)₁₇ (CAG)₁₁ (AAC)₁₂ (AAT)₁₂ (GATA)₉ and (CACC)₈), following the FIASCO procedure (Zane et al. 2002a) adapted as in Zane et al. (2002b). About 211 recombinant colonies 53 54 were screened by PCR with universal M13 primers and those with an insert longer than

approximately 400bp were selected for sequencing analyses. All the PCRs were performed on

56 GeneAmp PCR System 9700 thermal-cyclers (Applied Biosystems). Out of 108 sequenced clones,

57 75 contained a microsatellite motif, and 19 also had adequate flanking regions for primer designing

that was performed with the software OLIGOEXPLORER version 1.2 (www.genelink.com). A

59 standard amplification with unlabelled primer was performed directly from genomic DNA of 3

60 individuals in 20 μl of reaction mixture containing: *Taq* buffer 1X (Resnova), MgCl₂ 1.5 mM, 0.6

61 μ M of each primer, 200 μ M dNTP's, 1 units of *Taq*, and about 50 ng of genomic DNA. Thermal

62 cycler was set as follows: 94°C 30 sec, 50°C 30 sec, 72°C 30 sec, 30 cycles with an initial

63 denaturing step of 5 min at 94°C and a final elongation of 5 min at 72°C. Amplification products

64 were ran on 1.8% agarose gel to check amplification. A further selection was made on the basis of

65 the efficiency of PCR amplification from genomic DNA. Finally, 12 loci (Tab. 1) were labelled

66 with the appropriate dyes for fragment analysis with ABI PRISM 3100 or 3700 automated

67 sequencer all yielding reliable and reproducible profiles (external service, BMR Genomics).

68 PCR amplifications from genomic DNA were performed in 20 individuals from the Poznań

69 population, and 11 out of the 12 tested loci resulted to be polymorphic, with a number of alleles

ranging from 2 to 7. For all loci amplification conditions were the same as previously reported for

71 unlabelled primers with the only exception that annealing temperature was optimized according to

72 Table 1. Scoring was performed using PEAK SCANNER 1.0 software (Applied Biosystem). GENEPOP

- 73 3.4 (Raymond & Rouset 1995) was used to test for deviation from Hardy-Weimberg equilibrium
- 74 (HWE) and linkage disequilibrium (LD) with a statistical confidence interval (CI) of 99%;
- 75 Sequential Bonferroni correction for multiple comparison (Rice 1989) was applied. No locus pairs
- 76 were in significant LD and only locus H.sub13 was found to be significantly out of HWE.
- 77 MICROCHECKER (Van Oosterhout *et al.* 2004) analyses indicated the possible presence of null
- 78 alleles for locus H.sub13 (CI: 99%).
- 79 The relatively low number of alleles recorded in the Poznań population of *H. subterraneus* might be
- 80 the result of a founder effect, as the species has been probably accidentally introduced with garden
- 81 soil (Leśniewska et al. 2009b), but further comparative studies among populations inside and
- 82 outside the natural range of the species will be necessary to test this hypothesis.
- 83

84 Table 1. Characteristics of microsatellites loci in *Haplophilus subterraneus*. * = Significant deviation from HW equilibrium (P < 0.01) after sequential Bonferroni correction.

- 85 Fluorescent dyes used are reported for each labelled forward primer.
- 86

Locus	Primer sequences (5'-3')	Repeat motif	Annealing	GenBank accession number	No. alleles	Size range (bp)	Ho/He
H.sub16	$\begin{array}{l} F_{(NED)} \text{ GATAAATTGAGCATCAGCGAGTTT} \\ \textbf{R} \text{CGTACGGGTTTACATCTTGTTC} \end{array}$	(CAA) ₆	54 °C	HQ670723	3	284-293	0.35/0.38
H.sub1	$ \begin{array}{l} F_{(FAM)} GGATCTGCACTCAGATTTTCA \\ \textbf{R} & AACCCTTCATTCTTCCCTTTC \end{array} $	(TG) ₁₂	50 °C	HQ670724	3	159-181	0.25/0.46
H.sub47	F _(FAM) TTATGATGGACAGAACTGTA R ACGTGAAGTATAGAAGTGTA	(GA) ₁₁	54 °C	HQ670725	3	322-338	0.45/0.59
H.sub48	F _(VIC) CGTGGTGACGTGAGAATTT R GTTGACAACTTCGATCGGT	(GA) ₁₆	53 °C	HQ670726	7	188-218	0.65/0.78
H.sub56	$\begin{array}{l} F_{(NED)} \ CGTCATTGTGGGAAGATCTAATTC\\ R & GTGGAATAACAGGGATGCTAT \end{array}$	(CT) ₉	54 °C	HQ670727	3	253-259	0.55/0.55
H.sub13	F _(NED) CTCGGGAAATCCAGACC R GGCTGTCGGCTGATTTT	(CA) ₃ CC(CA) ₅	58 °C	HQ670728	2	139-147	0.00/0.26*
H.sub36	$\mathbf{F}_{(FAM)}$ TAACACATCACAATTTTATCTACG \mathbf{R} AAGGTTGTTTTGTGATACAA	(CT) ₈	54 °C	HQ670729	3	88-108	0.25/0.56
H.sub85	$\mathbf{F}_{(FAM)}$ AGGCAGCTGTAATAATCCAA \mathbf{R} TAGTATACACATCTCGCAGC	(CA) ₇	54 °C	HQ670730	3	226-230	0.40/0.46
H.sub61	$ \begin{array}{l} F_{(VIC)} \text{ AACCCTTTTCCTTGTATATAATC} \\ \textbf{R} \text{ATTCATTGAAAATTACACCGAGC} \end{array} $	(TC) ₆	54 °C	HQ670731	2	173-175	0.3/0.38
H.sub45	$ \begin{array}{l} F_{(VIC)} \ AGTTGTTATTGACTCCCGTT \\ R \end{array} \\ CAACAGCTCAACGATCTTAC \end{array} $	(GA) ₉	50 °C	HQ670732	5	242-254	0.5/0.6
H.sub43	$ \begin{array}{c} F_{(VIC)} \text{ TGAGTGAGCATATTTGCGAG} \\ \textbf{R} & \text{CAATCGCCGCTTTATTCTCT} \end{array} \end{array} $	(TG) ₇	50 °C	HQ670733	1	325	

88 89	References Leśniewska M, Bonato L, Minelli A, Fusco G (2009a) Trunk anomalies in the centipede
90	Stigmatogaster subterranea provide insight into late-embryonic segmentation. Arthropod
91	Structure & Development, 38 , 417-426.
92	
93	Leśniewska M, Bonato L, Fusco G (2009b) Morphological anomalies in a Polish population of
94	Stigmatogaster subterranea (Chilopoda, Geophilomorpha): a multi-year survey. Soil organisms,
95	81 , 347-358.
96	
97	Patwary MU, Kenchington EL, Birol CJ, Zouros E (1994) The use of random amplified
98	polymorphic DNA markers in genetic studies of the scallop Plactopecten magellanicus (Gmelin,
99	1791). Journal of Shellfish Research, 13, 547–553.
100	
101	Raymond M, Rouset F (1995) Genepop (version 1.2): population genetics software for exact tests
102	and ecumenicism. Journal of Heredity, 86, 248-249.
103	
104	Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223-225.
105	
106	Van Oosterhout C, Hutchison WF, Wills DPM, Shipley P (2004) Microchecker: software for
107	identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4,
108	535–538.
109	
110	Zane L, Bargelloni L, Patarnello T (2002a) Strategies for microsatellite isolation: a review.
111	Molecular Ecology, 11, 1-16.
112	
113	Zane L, Patarnello T, Ludwig A, Fontana F, Congiu L (2002b) Isolation and characterization of
114	microsatellites in the Adriatic sturgeon (Acipenser naccarii). Molecular Ecology Notes, 2, 586-
115	588.
116	
117	